
Machine Learning based Ocean Eddy Detection using Cloud Services

Seraj AM Mostafa1, Jinbo Wang2, Jianwu Wang1, Sanjay Purushotham1

{s172, jianwu, psanjay}@umbc.edu, jinbo.wang@jpl.nasa.gov
1 Information Systems Department, UMBC

2JPL, NASA

Abstract: The main objective of this study is to make use of cloud services, such as amazon
web services (AWS) to build machine learning models to identify ocean eddies from satellite
images. There are two major approaches to conduct machine learning at AWS. The first
approach is via AWS SageMaker, which is a machine learning platform that facilitates image
labeling, jupyter notebooks, and various algorithms for model training. The second approach is
via AWS EC2, which provides virtual instances as execution environments. Beside SageMaker
and EC2, we also configured Google cloud as an alternative service to train our models to
identify ocean eddies from satellite images. We chose a three layer CNN (convolutional neural
network) model for binary image classification to see whether the images contain eddies or not,
and YOLOv3 for eddy detection and localization (where the eddy is located if there are eddies in
images). In terms of accuracy, our CNN model achieved 60% accuracy. Using the YOLOv3, the
intersection over union (IoU) ranged from 40% to 90%. Comparing features we found that
SageMaker is equipped with more functionalities compared to Google cloud platform (GCP),
however, the services are not easy to merge to build end-to-end pipelines. GCP offers GPU
(graphics processing unit) based services by default with TPU (Tensor Processing Unit) and
CPU (Central Processing Unit) as well but in AWS the GPU base services need to be
configured beforehand. In this work, we configured the scripts using Horovod to deploy on GPU
based EC2 instances. Codes are open sourced for further references at
https://github.com/big-data-lab-umbc/AWS-automation/tree/main/gpu-example/OceanEddy.
Between SageMaker and EC2, we think EC2 is a general computing resource and provides a
lot of freedom for users to decide on what to do such as installing any software/packages,
running Docker images, running Jupyter notebooks, utilizing multiple EC2 instances for parallel
execution. Meanwhile, most of these capabilities need manual command line operations from
users, which could be difficult for users who are not frequent command line users.

Introduction: This study uses cloud services to build Convolutional Neural Network (CNN)
deep learning models to identify ocean eddies from SAR satellite images. Our first approach is
to build a CNN for binary image classification. In this approach we identified whether the image
is an eddy containing image or not. The second approach is to identify the eddy within a given
image. To do so, we used YOLOv3 as an object identification and localization method which is
able to identify an eddy and its location within that image. In both cases we used amazon web
services (AWS) and Google as cloud platforms and their services such as, AWS SageMaker, S3
bucket, EC2, Google Colab and Google drive respectively which is discussed in the following
section.

https://github.com/big-data-lab-umbc/aws-automation/tree/main/gpu-example/OceanEddy


The main goal throughout this research was to identify how convenient the new tool (e.g., AWS
SageMaker) and existing (e.g., Google cloud) tools in terms of their usability to build pipelines
for such kinds of analysis (ocean eddy detection) to understand climate change. The AWS has
got more features in terms of building machine learning (ML) pipelines, for example, it allows
users to label images from AWS S3 storage, to choose ML algorithms to train models and store
them for future use. It also provides GPUs to its user with additional cost. Moreover, SageMaker
supports Edge services which are highly scalable and faster in processing. In our experiment,
we utilized both GPU and CPU based SageMaker nodes incorporating S3, also single and
multicore GPU based EC2 instances. GCP, on the other hand, is more convenient and free to
use, though users can purchase high configuration GPUs for additional cost. The main problem
with Google cloud we faced is ‘time out’ after a certain time of inactivity, whereas in SageMaker
we did not face anything like this. In terms of environment and library compatibility, GCP is more
user friendly compared to SageMaker, however we can configure it according to our need to
meet those requirements. A more detailed description of each term and functions can be found
in the following sections.

The next chapters talks about each term (ocean eddy, sar data, AWS SageMaker, S3 bucket,
EC2, GPUs, Google services, CNN, YOLOv3), methodologies of this work, a detailed
description on SageMaker as a tool perspective, results and discussion, and lastly a conclusion
with future work direction.

Term clarifications:
Ocean eddy: An eddy is a circular current of water or air that runs contrary to the main
current (flow). Usually Eddies are smaller, temporary loops of swirling water that can
travel long distances before dissipating. Ocean eddies help distribute heat to the lower
sea level as well as can transfer proteins for the sea creatures and lives. Significant
amounts of current flow may cause effective hurricanes. In a nutshell, ocean eddies play
an important role in climate change.

Figure 1: ocean eddies [2]

SAR-data: Synthetic aperture radar (SAR) data is collected from active sensors that
transmit the microwave signals and then receive back the returned signals from the earth
surface [9]. SAR data are basically high resolution satellite single or multi band images.



In this study we are provided the SAR image data from Jet propulsion laboratory (JPL),
NASA [3] in tiff and png formats.

SageMaker: Amazon SageMaker is a fully managed cloud based machine learning
service launched in November 2017. SageMaker not only enables data scientists and
developers to quickly and easily build and train machine learning models, and then
directly deploy them into a production-ready hosted environment. It also allows
deployment of ML models on embedded systems and edge-devices. It provides an
integrated Jupyter authoring notebook instance for easy access to your data sources for
exploration and analysis, so there is no need for server management. It also provides
common machine learning algorithms that are optimized to run efficiently against
extremely large data in a distributed environment. With native support for
bring-your-own-algorithms and frameworks, SageMaker offers flexible distributed training
options that adjust to your specific workflows. Deploy a model into a secure and scalable
environment by launching it with a few clicks from SageMaker Studio or the SageMaker
console [4].

S3 bucket: Simple Storage Service (Amazon S3) is an object storage service that is
offered by AWS services that ensures scalability, security with high performance. S3 is
available for any size and sort of use cases such as, data lakes, websites, mobile
applications, backup and restore, archive, enterprise applications, IoT devices, and big
data analytics [5].

EC2 Instance: Amazon’s Elastic Compute Cloud (EC2) is a cloud computing platform
that allows users (with a subscription) to run their computing intensive applications. EC2
provides scalable deployment of applications in the cloud by initiating an instance and
could turn off/terminate whenever the user wants [11]. EC2 allows us to choose from
various operating systems including, linux (cent os, redhat, ubuntu), macos, raspberry pi
and windows server with 32 and 64 bit architecture. Users can also choose from either
CPU or GPU based instances with multiple cores (with added price).

GPUs: Graphics processing units (GPU) are specially designed electronic circuits that
accelerate the image processing. GPUs are used within various systems including
embedded systems, mobile phones, personal computers, workstations, game consoles
and so on. Modern GPUs are very efficient with their highly parallel structure that
differentiate the GPUs from the general-purpose central processing units (CPUs) for
processing large blocks of data and algorithms in parallel. Cloud GPUs provide hardware
acceleration without requiring that a GPU is deployed on the user’s local device.
Common use cases for cloud GPUs are big data processing, visualization workloads and
computational workloads. In recent times GPU parallelism has been popular within
Distributed Deep Learning (DDL) platforms. For large scale deep learning workloads
GPU parallelism is one of the top most choices in the data scientist community. In this
report we also introduced the DDL framework for the Ocean Eddy project.



Google Cloud Platform (GCP): GCP offered by Google, is a suite of cloud computing
services that runs on the same infrastructure. Google Cloud Platform provides
infrastructure as a service, platform as a service, and serverless computing
environments. It provides plenty of services including Storage, Databases, Networking,
Operations, Developer Tools, Data Analytics, AI and Machine Learning. Google’s Colab”
for short, is a product from Google Research. Colab allows anybody to write and execute
arbitrary python code through the browser, and is especially well suited to machine
learning, data analysis and education. More technically, Colab is a hosted Jupyter
notebook service that requires no setup to use, while providing free access to computing
resources including GPUs [6, 7]

CNN: A convolutional neural network (CNN, or ConvNet) is a class of artificial neural
network (ANN), most commonly applied to analyze visual imagery. CNNs are composed
of multiple layers of artificial neurons. Artificial neurons, a rough imitation of their
biological counterparts, are mathematical functions that calculate the weighted sum of
multiple inputs and output an activation value. When we input an image into a ConvNet,
each of its layers generates several activation maps. Activation maps highlight the
relevant features of the image. Each of the neurons takes a patch of pixels as input,
multiplies their values by its weights, sums them up, and runs them through the
activation function.

YOLOv3: YOLO is an abbreviation for the term ‘You Only Look Once’. This is an
algorithm that detects and recognizes various objects in a picture (in real-time). Object
detection in YOLO is done as a regression problem and provides the class probabilities
of the detected images. The YOLO algorithm employs convolutional neural networks
(CNN) to detect objects in real-time. As the name suggests, the algorithm requires only a
single forward propagation through a neural network to detect objects. This means that
prediction in the entire image is done in a single algorithm run. The CNN is used to
predict various class probabilities and bounding boxes simultaneously. The YOLO
algorithm consists of various variants. Some of the common ones include tiny YOLO and
YOLOv3 [10]. YOLO completes the processes in a few steps that includes residual
blocks, bounding box regression and Intersection over Union (IOU).

At first, the residual block which is the network comes made up of convolutional layers
that detect key features from images and process them by dividing the images into
various grids (such as a dimension of SxS). Then, in the bounding box regression
part, features from the convolution layers are used to make predictions on probabilities
and bounding box coordinates that highlight an object within the image. Every bounding
box in the image consists of width, height, Class (for example, person, car, eddy, etc.),
and bounding box center. The final part is the Intersection Over Union (IOU) is the
evaluation process that describes how boxes overlap. YOLO uses IOU to provide an
output box that surrounds the objects perfectly. Each grid cell is responsible for
predicting the bounding boxes and their confidence scores. The IOU is equal to 1 if the



predicted bounding box is the same as the real box. This mechanism eliminates
bounding boxes that are not equal to the real box.

Dataset: We are given the satellite images which were in Float32 ‘tiff’ format. One major
problem with those images is, the content cannot be seen in regular image viewer applications
(e.g., photos in windows). We used QGIS (quantum geographic information system) software to
view the image content. QGIS is also capable of converting images to ‘png’/’jpg’ formats. The tiff
images were in RGB format, where one channel had the information we needed, and the other
two channels contained latitude and longitude information. Thus, we needed to extract only the
single band out of the image. To do so, we used the Geospatial Data Abstraction Library (GDAL)
to extract the single band and convert the images (using gdal python) to Uint8 png formats. These
Uint images were then viewable by the regular photo viewing applications. The main purpose of
converting those images using GDAL library was to make them compatible in AWS and Google
platform and reduce the image size to train them using the RestNet model as the tiff images
were not able to be read by either of those platforms.

Figure 2: same image before(left) and after(right) conversion using ‘gdal’ library



Figure 3: CNN model summary

Methodologies: There are 75 images in total where 70 of them are with eddies and 5 of them
are with no eddies. We trained two different models for this study. Due to the imbalance data we
first trained a K fold Cross validation CNN model (k=5) using the converted images. We used
three consecutive convolutional and max pooling layers with the input shape of 256x256x1, relu
activation in all three of them and later relu and sigmoid at the dense layer. Figure 4 is a model
summary used in our case. The CNN model with cross validation achieved 60% accuracy using
the CPU (reproducible using fixed seed). We also tried the same code with GPU based
execution, but found the accuracy can vary the result, which might be because of their own
randomness in the code [1].

We also used an object detection approach using YOLOv3. The main objective of this model is
to identify and locate eddies in images. Before feeding the YOLO model, we prepared the
labeling data in two ways. Our first approach was using the ‘ground truth’ feature from AWS’s
SageMaker and the second approach was to use the ‘LabelImg’, a graphical image annotation
tool. Both of these tools provided the annotation data for the boudin box. Sagemaker has few
extra features other than just bounding box options, which are image classification, semantic
segmentation, label verification, anchor boxes etc. We only use the bounding box feature in this
study. The annotated results produced from ground truth are stored into S3 bucket as a
‘manifest’ file which is directly accessible to the jupyter notebook in the AWS platform for further
processing. LabelImg, on the other hand is more specific to YOLO (and pascal voc, which we
did not use) that provided bounding box annotations results. We then used the image files and
text files with the annotated bounding box information to the YOLO model to train. We trained a
custom model using our own data and custom configuration (cfg) files with necessary
requirements. Some core changes in the configuration file are shown in Figure 5.



Figure 4: Yolo v3 custom configuration file
(key changes from default configurations are shown)

Detecting the eddies from these images was quite challenging, however we got a variable
success rate starting from 40% to 90% while detecting and locating the eddies. The probable
cause of less accuracy could be, i) the circular motion of eddies sometimes expanded with
variable tail size (long/short and/or thin/thick tails) in the images, and ii) the deep learning model
requires a large number of images which we do not have in our case.

However, we faced some limitations with the YOLO for our model prediction. We observed that
the results are quite variable in terms of identifying and confidence level. As we can see from
the above images. In portion 1, we can see ot detected the eddy correctly but the confidence is
as low as 44%, in portion 2, it detected one of the two eddies with the same confidence. In
portion 3, it detected a less important eddy by leaving the center eddy. In block 4 we have pretty
good results both for eddies and non-eddies.



Figure 5: object detection and identified using YOLOv3

Ocean Eddy Detection via AWS SageMaker: Amazon SageMaker is a great tool for
developers and data scientists to quickly and easily build, train, and deploy machine learning
models at any scale. The SageMaker removes the barriers of knowing programming languages
to train and build models for non computing personnel. However, it is not as user friendly yet
that anyone can use without prior knowledge. The AWS documentation for SageMaker also
lacks more defined steps towards building an end-to-end model.

SageMaker provides a ground truth tool that enables a user to label their images. Users can
either choose from single class to multi class problem, or use bounding box annotations to
primarily indicate objects. It also allows additional workers to do the job. For example, if you
have 1000 images to label you can assign a few workers to label the images. After labeling all
images, it is stored in the S3 bucket as a manifest file which contains a json type structure.
Basically, this manifest file provides the bounding box values along with the image path. This
manifest file can directly be used in model training.

Another important thing about SageMaker is, it provides a jupyter notebook which is a
convenient option for developers to deploy their customized codes. The jupyter notebook can
directly access files from S3 bucket within the AWS platform which is faster and convenient in
terms of accessibility. Even any produced results from this notebook can be stored back to the
S3 directories.

The next important feature of SageMaker is the ‘Training’ feature that allows users to train their
model. The main purpose of this feature is to enable any user without no programming
knowledge to still train models according to their needs with a few simple steps like choosing



directories from S3, selecting which model to run, etc. In this study we did not go through this
automatic method selection process.

Beside these features we found some significant shortcomings with amazon SageMaker. First, if
there is no worker assigned, the labeling process is never completed which means, the original
initiator cannot finish the labeling job alone as of now. Second important drawback is that you
can assign more than one worker but when any one worker has completed his/her labeling task,
it does not allow other workers to do their jobs. When the next worker logs in to complete their
tasks, they get a notification saying that, ‘you have no work to do!’. We are identifying this as an
important problem as various workers might have more labeled data that could help in accuracy.
Another important con we found is we could select a model to train using AWS SageMaker
using our annotated data from the ground truth to build an end-to-end pipeline, however the
platform does not support that yet.

Ocean Eddy Detection via AWS EC2: In this work we also utilized the EC2 instance for ocean
eddy detection. EC2 offers a range of OS platforms with either CPU or GPU based computation.
We are more interested in single core and multi core GPU instances which are used throughout
this work. In terms of image processing GPU is an ideal hardware as it offers comparatively
faster processing than CPU. Moreover, multicore GPUs in EC2 allow parallel processing which
is even better for large data sets.

The EC2 instances can easily be configured from the terminal in terms of setting up the
environment. Once the environment is prepared, the data and source code can be uploaded to
the instance. We cannot execute any notebook files (i.e. jupyter notebook in SageMaker) other
than scripts (i.e., bash, python etc.) To use the GPU, we need to confirm that the GPU is
enabled and can be accessed. To ensure that we use CUDA that manages the GPU instances
and to ensure the distribution of workload we use Horovod [12]. Horovod is a free and
open-source software framework for distributed deep learning training using Keras and other
popular libraries. The main goal of Horovod is to make distributed Deep Learning faster and
easier which we deployed in the OceanEddy project. The OceanEddy training script is
configured using Horovod to scale up the training process between GPUs. The OceanEddy task
is now fully parallelized using Horovod. Sample notebooks and scripts configured with Horovod
can be found in our github repository.

Results and discussions: the results we have achieved so far are satisfactory in terms of
identifying ocean eddies from satellite images. However, there is room for improvement by
incorporating more images of similar type. When we have more annotated images we can
improve our results toward better prediction. This project was a very good learning experience
on how to work with imbalanced image data in terms of CNN and object localization in cloud
platforms. The SageMaker is especially new and exciting in terms of its purpose. Furthermore,
we would like to have more high resolution images to train and test our model to compare how
the models behave if we have different kinds of eddy images. In order to improve CNN and
YOLO, we need a balanced dataset with increased numbers. Also we would like to try with
better quality images where the characteristics of eddies are identifiable. For example, in most

https://github.com/big-data-lab-umbc/aws-automation/tree/main/gpu-example/OceanEddy


cases the eddy tails overlapped other eddies with their long tails (from a visual observation) and
it is hard to define a single perfect eddy. This is one of the observations from this study. The
other possible reason could be image contents, for example, the image has some dark spots
around eddies (some images) which is misleading toward non-eddies.

Conclusion and future work: This study helped us to understand the ocean eddy detection of
specific regions by training models from satellite data using cloud services and. From this result
we can determine whether there is an eddy and where the eddy is located within the image.
However, it is possible to be specific with the size of eddis, their movements, directions and
probable cause of variation and possible impacts in the sea life thus observing the atmospheric
changes. Further analysis on the ocean eddy tracking and analyzing the variations by building
suitable models using available cloud services would help us better understand climate change
in a quicker manner.

References

[1] https://machinelearningmastery.com/reproducible-results-neural-networks-keras/
[2] https://www.whoi.edu/know-your-ocean/ocean-topics/ocean-circulation/currents-gyres-eddies/
[3] https://www.jpl.nasa.gov/
[4] https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
[5] https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
[6] https://cloud.google.com/docs/overview
[7] https://research.google.com/colaboratory/faq.html
[8] https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
[9] https://asf.alaska.edu/information/sar-information/what-is-sar/
[10] https://medium.com/analytics-vidhya/yolo-explained-5b6f4564f31
[11] https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
[12] https://horovod.ai/

https://machinelearningmastery.com/reproducible-results-neural-networks-keras/
https://www.whoi.edu/know-your-ocean/ocean-topics/ocean-circulation/currents-gyres-eddies/
https://www.jpl.nasa.gov/
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://cloud.google.com/docs/overview
https://research.google.com/colaboratory/faq.html
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
https://asf.alaska.edu/information/sar-information/what-is-sar/
https://medium.com/analytics-vidhya/yolo-explained-5b6f4564f31
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://horovod.ai/

