Deep Learning Transformers for Retrieval of Cloud Optical Properties
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Comparison of multi-view COT retrieval results at each angle of fractal clouds with
varying CTH, varying CER, and varying COT for (Left) Nakajima and King (Right) BiTE.

Multi-view: datasets 3 and 4

Settings: 5-fold cross validation, Adam optimizer

Evaluation metrics of retrieval errors: mean square error (MSE), root mean
square error (RMSE), mean absolute percentage error (MAPE) Summary
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