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Introduction
● One main FAIRness challenge for AI/ML model is reproducibility. By reproducing an existing 

computational experiment and obtaining consistent results, we can have more confidence in the 

research. Further, besides reproducing the exact process, we could easily explore how the 

experiment behaviors with different input datasets, execution arguments and environments. 

● Cloud-based reproducibility has been a major approach for reproducible computing services 

because the full stack of the computation environment, including data, software and hardware, could 

all be provisioned and shared via various cloud services. 

● Cloud will become a major environment for Earth Science community because more and more 

Earth data from NASA and other data providers will be stored on the Cloud.
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Our Work
● Our proposed approach and toolkit, Reproducible and Portable big data 

Analytics in the Cloud (RPAC), integrate serverless computing techniques to 

automate end-to-end big data analytics pipeline. 

● To deal with the vendor lock-in challenge, we propose a Cloud Agnostic 

Application Model (CAAM) to support execution and reproduction with 

different cloud providers. Our RPAC toolkit supports both AWS and Azure 

cloud environments.

● We benchmark both CPU-based and GPU-based big data analytics 

applications using our RPAC toolkit. 
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Background
● Besides re-running exactly the same application, three aspects could vary 

during reproduction of an existing application for specific reasons: 

○ Different application configuration (dataset, application argument, etc.) 

to know how the application performs with different datasets or 

arguments.

○ Different cloud provider hardware environment (virtual machine type 

and number, etc.) within the same cloud provider to test scale-up and 

scale-out.

○ Different cloud provider to avoid vendor lock-in problem.
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Background (2)

● Serverless computing asks the cloud provider to allocate machine resources on 

demand, taking care of the servers on behalf of their customers.

● Advantages of serverless computing in cloud: 

○ It responds to user service requests without maintaining back-end servers in the 

cloud. 

○ It employs Function as a Service (FaaS) architecture that allows customers to develop 

separate functions directly rather than standalone cloud applications. Each 

application logic/pipeline is split into functions and application execution is based on 

internal or external events. 
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Overview of Reproducible and Portable big data 
Analytics in the Cloud (RPAC)

● RPAC enables users easily re-run previous 
experiments with the same or different setups.

○ First execution of an application

○ Reproduction of the existing execution by 
querying historical configurations

● The execution and reproduction is fully 
automated by the RPAC toolkit and can be 
done via a single command.

● Minimal information requirements from users: 
application program URI, cloud instance type, 
etc. 
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RPAC: First Execution of an Application

● Prepare configurations for the whole execution.

○ Personal, resources, and application config

● Create the executable pipeline for the target 

cloud. 

● Execute analytics in the cloud and output results 

to the storage automatically.
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RPAC: Reproduction of an Existing Execution
● Reproduce an existing execution with the exact 

environment and configuration.

○ Directly use pipeline file within the storage

● Reproduce in different environment or 
application configuration.

○ Combine changed configurations with the 
historical execution information to generate 
a new pipeline 

● Reproducing on a different cloud.

○ Provides cloud service mapping and 
implementations of serverless functions to 
generate a new pipeline 
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Scalable Execution for Big Data Analytics
We also provide three parallel frameworks of scalable execution in the cloud:

● Spark-based big data analytics on virtual CPU nodes.

○ The resource manager like YARN NodeManager initiates the environment from a pulled docker image, 
and allocates one virtual instance in cluster as the master while others as workers. The master runs Spark 
command.

● Dask-based big data analytics on virtual CPU nodes.

○ Each virtual instance in cluster initiates one docker container and our pipeline assigns one of the 
containers to be the Dask scheduler and others to be workers. The scheduler runs Dask command.

● Horovod-based big data analytics on virtual GPU nodes.

○ RPAC executes multi-instance GPU-based data analytics within our pre-built Docker containers, setting 
one of them as the primary worker and others as secondary workers. The primary worker runs the MPI 
parallel command while secondary workers listen to a specific port.
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Earth Science Applications

● Cloud property retrieval: It trains a Random Forest machine learning 

model for cloud mask and cloud thermodynamic-phase retrieval from 

VIIRS and CALIOP satellite observations.

● Ocean eddy identification: It trains a CNN based deep learning model for 

binary classification and YOLO deep learning model for ocean eddy 

bounding boxes (object detection) from SAR datasets. 
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Small-scale ocean eddies (<100 km) are detectable from  ocean SAR, SST, color 
images and soon by a new satellite altimetry mission - Surface Water and Ocean 
Topography (SWOT). ML will play an important role in subtract useful information 
from the PB-scale of multi-sensor data.

50km

The surface relative vorticity from 1/48 ECCO simulation (LLC4320)



FAIRness Requirements for Ocean Eddy Detection

We think cloud services can help make the whole pipeline more FAIR and reproducible

● How to easily prepare training data and make them FAIR?
○ We are exploring AWS SageMaker to access data from AWS and do collaborative labeling

○ One difficulty is how to seamlessly load NASA (PO.DAAC cloud) data into SageMaker 

● How to record machine learning model training process for easy reproducibility
○ Our toolkit can help automated model training and reproducibility by leveraging AWS cloud services

● How to iteratively improve ocean eddy detection capability with collaborative efforts?
○ The services/tools above could help others easily add additional data for better model accuracy 

and/or build better machine learning models for fair comparison
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Conclusions
● By leveraging serverless, containerization and adapter design pattern techniques, our RPAC toolkit 

can achieve reproducibility, portability and scalability for cloud based big data analytics. 

● We are applying the toolkit with Earth science applications.
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Detailed Information
● Paper and GitHub repository of our toolkit:  https://bdal.umbc.edu/tools/#reproducible-data-analytics 

● Toolkit demo at today’s Research Showcase Poster & Demo Live Event (4:30-6:00 ET, 1/19/2022)
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