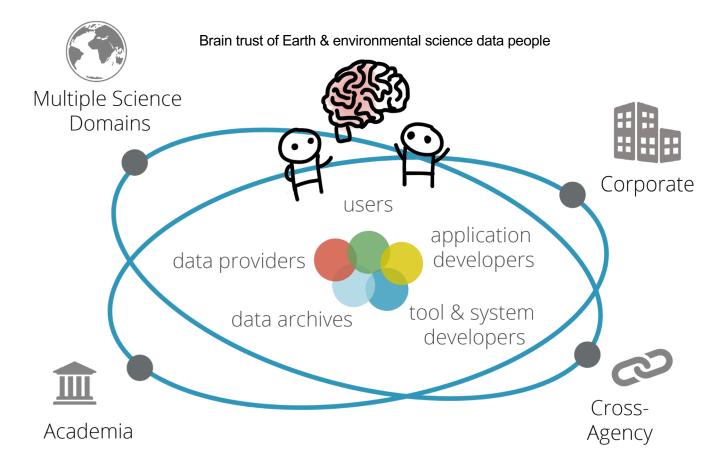


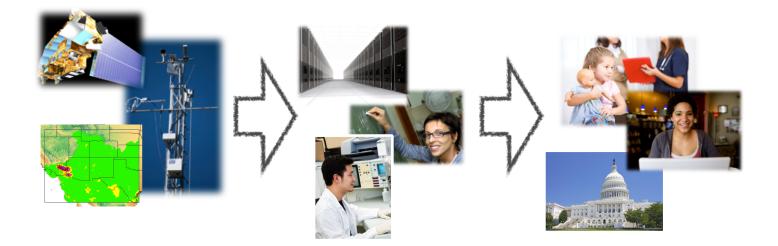
An Extensible Geospatial Data Framework (GeoEDF) for FAIR Science

Dr. Carol Song Sr. Research Scientist, Purdue Univ.

Assisted by: Rajesh Kalyanam Research Scientist, Purdue Univ.


Data to Action Webinar: Increasing the Use and Value of Earth Science Data and Information

October 25th, 2019 | 1:00 pm ET


and 120+ member organizations

ESIP COMMUNITY

To be a leader in promoting the collection, stewardship and (re)use Of Earth science data, information and knowledge that is responsive to societal needs.

An Extensible Geospatial Data Framework (GeoEDF) for FAIR Science

Dr. Carol Song Sr. Research Scientist, Purdue Univ.

Assisted by: Rajesh Kalyanam Research Scientist, Purdue Univ.

Data to Action Webinar: Increasing the Use and Value of Earth Science Data and Information

October 25th, 2019 | 1:00 pm ET

and 120+ member organizations

NSF AWARD #1835822

An Extensible Geospatial Data Framework (GeoEDF) for FAIR Science

Carol Song, Rajesh Kalyanam, Purdue University

ESIP "Data to Action" Webinar OCTOBER 25, 2019

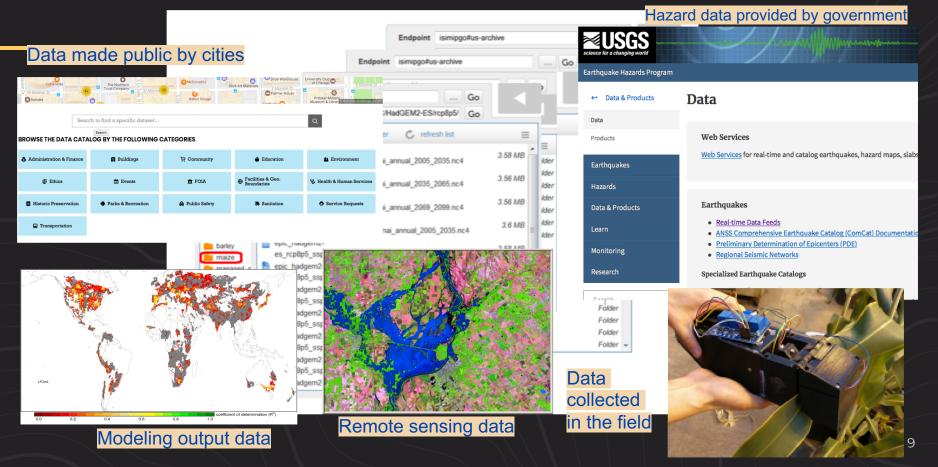
The GeoEDF Project

An Extensible Geospatial Data Framework Towards FAIR Science

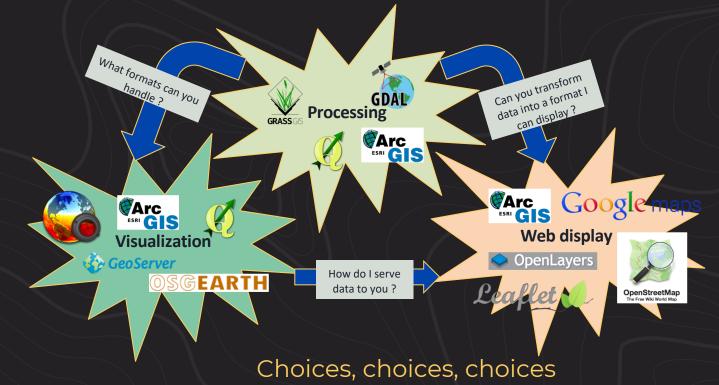
To help data-driven sciences to be more Findable, Accessible, Interoperable, Reusable

funded by NSF CSSI program (Cyberinfrastructure for Sustained Scientific Innovation), Data Framework track, \$4.5M

October 2018 - September 2023


Project Leadership

OVERVIEW

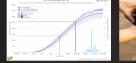

Extensible, Geospatial Data Framework Towards FAIR Science (GeoEDF)

Rapid growth of geospatial, geo-referenced data

Software stack for spatial data

It is definitely not trivial to deal with geospatial data (processing, displaying, exchange/sharing, etc)

Take 1: GABBs -- Geospatial Data Building Blocks



Geospatial Data Building Blocks (GABBs)

Water Hub Platform for water education, research, data access, partnership and collaboratio

Integrated data management environment with **built-in** geospatial data support

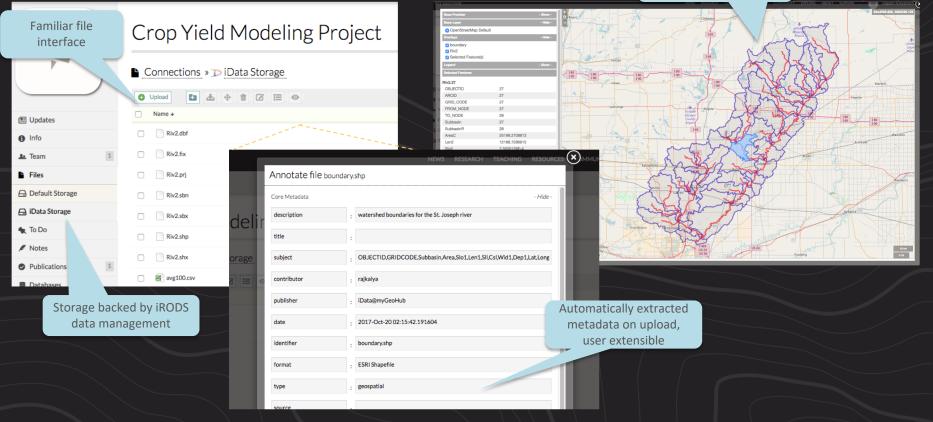
Data visualization builders and tools that require **no programming**

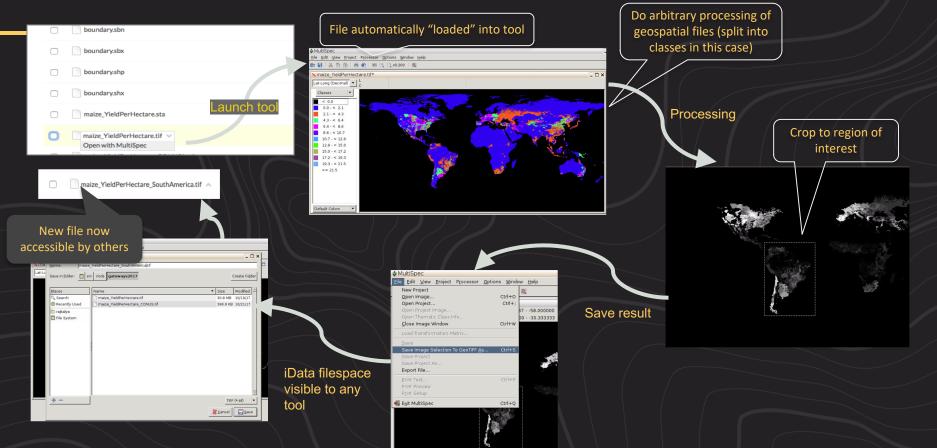
Publication of data and tools (DOI)

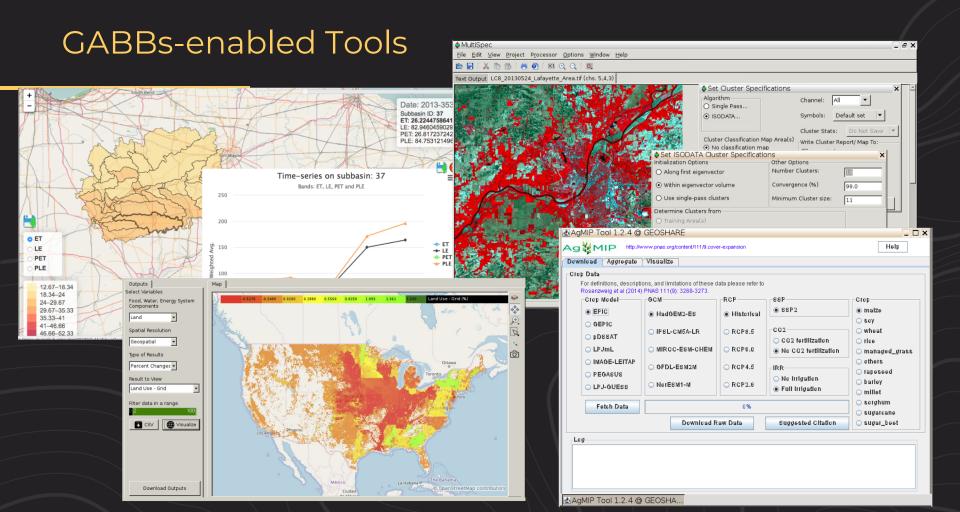
Toolkits for rapid application development, **no GIS programming expertise** required

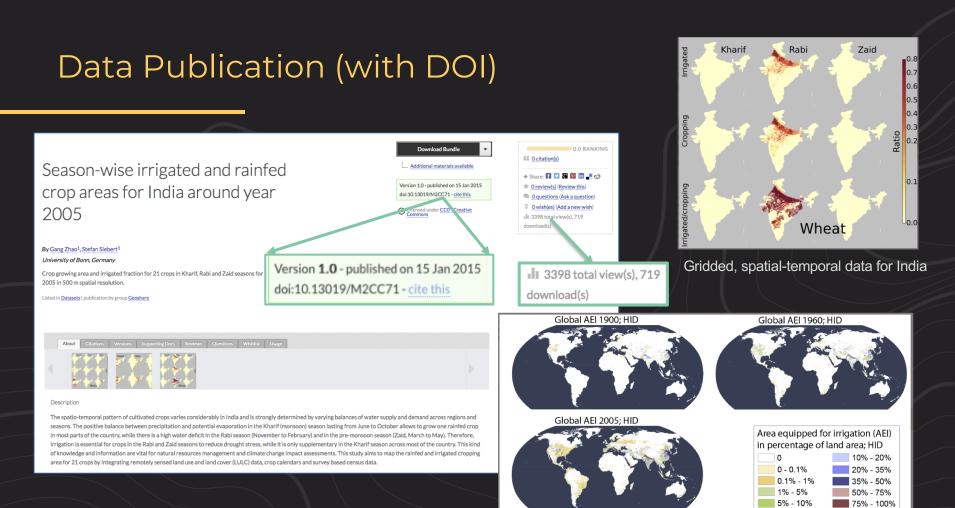
Data service API, interoperability

Easy to use and replicate






Integrated Geospatial Data Platform


Preview and explore geospatial files right in the browser

Example workflow in one place

Another example: Global gridded, spatial-temporal data, 1900-2005

The GeoHub Geospatial Science Gateway

myGeoHub This hub supports the geospatial modeling, data analysis and visualization needs of the broad research and education communities through hosting of groups, datasets, tools, training materials, and educational contents. Sign up for a free account and start accessing the resources here. Please contact us if you are interested in hosting your group on mygeohub.org. water hub G · A · B · B · S GLASS STAP driNET Global Trade Analysis Project

mygeohub.org

The GeoHub Geospatial Science Gateway

Wrangling of data, computation, software, ...

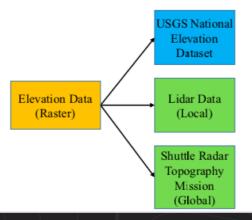
OUR DATA WORKFLOW - Ver. 1 2 3 1. Make sure date is just after <u>1st</u> or <u>15th</u>! 2. Go to: usgs.gov prdtnm.s3.amazonaws.com/index.html?prefix=StagedProdu 3. Browse: Hydrography...NHDPlusHR...Beta...GDB. 4. Download NHDPLUS_H_01##_HU4_GDB.zip where 5. Unzip it - WARNING: Have enough space!!! 6. Run our tool. WARNING: Takes a loooong 7. Upload output Files to chuster Note: Balt until all 8. Kick off our standard jobs. 9. Occasionally check 'em. Wait for email(s)??? 10. Download new images. 11. Ask Fred to upload to website. Mary? 12. Tell everybody there's new stuff.

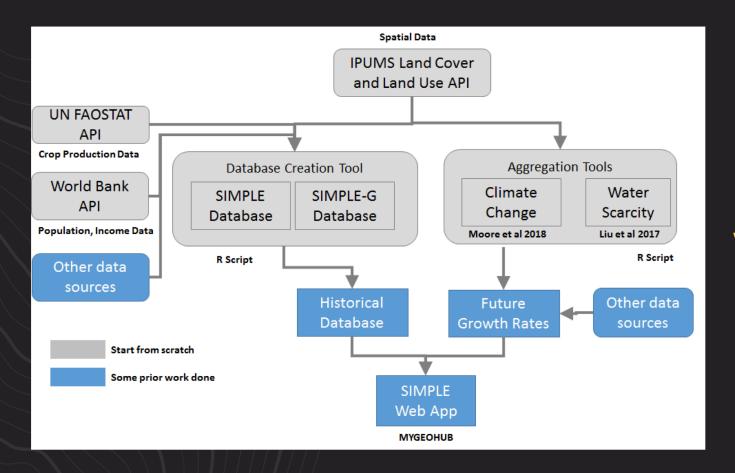
Data Challenges in Being FAIR

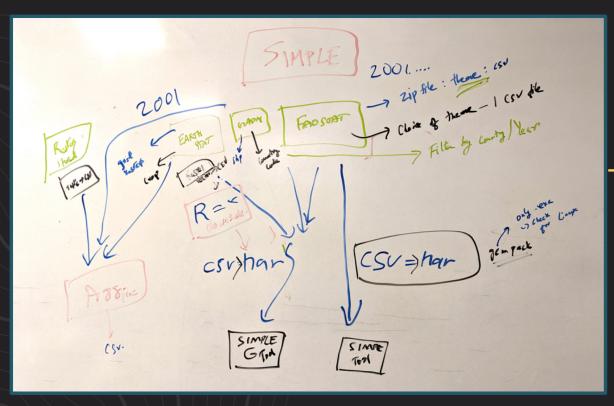
Even in the age of large computational resources, research is faced with:

- Manual workflows, or custom-made automated processing
- Coding data acquisition and processing requires diverse software knowledge
- Code requires frequent modification on data provider technology changes
- Cross-domain research requires domain-specific data format knowledge
- Workflows seldom reproducible

Capturing complex data pipelines (example)


Potential pitfalls with other elevation data sources


- 1/9th arc-second or LiDAR or 1-m DEM not available nationally
- Pre-processed Lidar available in some states (IN, OH, MN, NC)
- Create Lidar acquisition tool where available or not?
- Conversion of Lidar point cloud to bare-earth DEM is an issue
- SRTM → available globally at different resolutions
- Probably need to re-project user shapefile to USGS coordinates first
 - Lidar Point cloud availability



1-m DEM availability

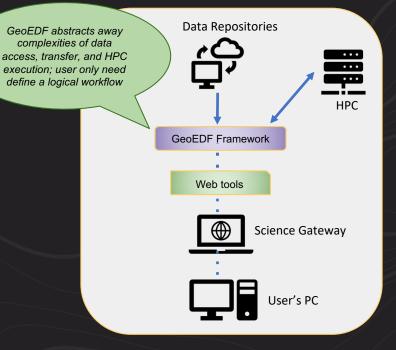
Example Workflow

There are a lot more details

GABBs 2.0: GeoEDF -- Vision

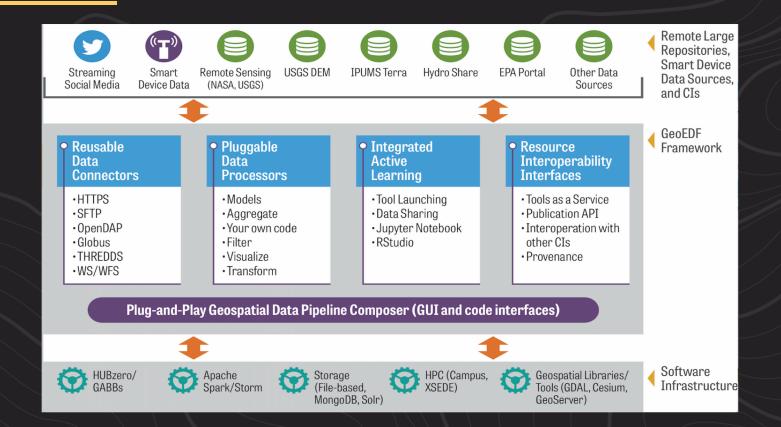
Create an extensible geospatial data framework that will address the challenges by providing seamless connections among platforms, data and tools, hence making valuable, large scientific and social datasets usable directly in scientific models and tools.

The ultimate goal is to put easy-to-use tools and platforms into the hands of researchers and students to conduct scientific investigations following FAIR science principles.


FAIR = Findable, Accessible, Interoperable, Reusable

Vision: After GeoEDF

OUR DATA WORKFLOW - Final


- 1. Go to the science gateway
- 2. Define "my_workflow.yml" (or use tool GUI if needed)
- 3. Ask GeoEDF to execute!

4. Data and workflow automatically published to science gateway

- Automated, secure, logged process running on dedicated infrastructure You can log off!
- Leverage building blocks from existing workflows
- Data transfer and HPC execution abstracted away
- Automatic provenance capture and data annotation for future discoverability, reproducibility

GeoEDF High-Level View

Deliverables

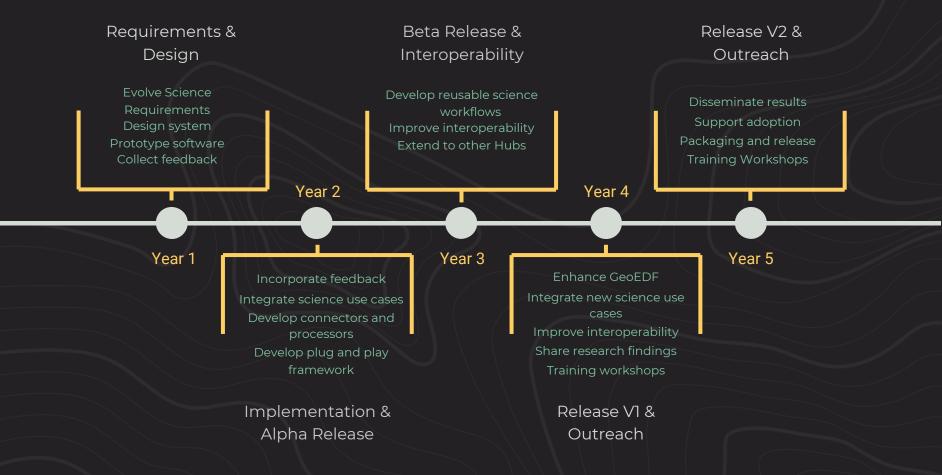
<u>CI</u>

Plug-and-play geospatial data framework, opensource packages installable on CI platforms

<u>Science</u>

Scientific workflows composed of reusable building blocks

FAIR


Enhanced HUBzero publication, course, tool/data linkage for FAIR science

<u>Outreach</u>

+

Training materials, CI interoperability, workshops, support

Project Timeline

Design and Cyberinfrastructure

Workflow Example I

Select an Earth Observation product type

✓ MODIS-ET/PET/LE/PLE

MODIS-LAI/FPAR SMAP AMSR-E GPM NLDAS

Enter name for this data request 1

a (maximum of 1 year)

)1/05/2014

Mask with shapefile, compute weighted aggregate for each polygon

Workflow Example I - Opportunity

Select an Earth Observation product type

NLDAS Enter name for this data request 1 http://files.ntsg.umt.edu/data/NTSG_Products/MO D16/MOD16A2.105_MERRAGMAO/Y2001/D001/ MOD16A2.A2000001.h00v08.105.201312120013 0.hdf

https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.00
 6/2002.03.19/MCD15A3H.A2002193.h07v07.006.
 2015149100709.hdf

https://n5eil01u.ecs.nsidc.org/SMAP/SPL4SMGP.0 03/2015.03.31/SMAP_L4_SM_gph_20150331T013 000_Vv4030_001.h5

Workflow Example I - Opportunity

MODIS grid

Workflow Example II

```
def GetNED(NL, WL):
    name1 = "n"+NL+"w"+WL
    address = "ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/1/ArcGrid/USGS NED 1 "
    url final = address + name1 + " ArcGrid.zip"
    print(url final)
work folder name = os.path.join(input folder name, "WorkFolder")
if os.path.exists(work folder name) == False:
     os.mkdir(work folder name)
boundary path = os.path.join(input folder name, boundary file)
input crs = QqsVectorLayer(boundary path, '', 'ogr' ).crs().authid()
#processing.run('qgis:reprojectlayer',{'INPUT': full input path, 'TARGET CRS':'EPSG:10267
processing.run('native:reprojectlayer', {'INPUT': boundary path, 'TARGET CRS':'EPSG:4326',
input_list = [os.path.join(work_folder_name, cur_raster) for cur_raster in raster_names]
print("Merging Raster...")
processing.run("gdal:merge", {'INPUT':input list, 'OUTPUT':work folder name + "/merged rast.tif"})
print("Projecting Raster...")
processing.run('gdal:warpreproject', {'INPUT': work folder name + "/merged rast.tif", 'TARGET CRS'
print("Clipping Raster...")
processing.run('gdal:cliprasterbymasklayer',{'INPUT': work folder name + "/proj rast.tif", 'MASK':
print("DEM prepared successfully!!!")
```

Workflow Example II - Opportunity Get NED from USGS def GetNED(NL, WL): name1 = "n"+NL+"w"+WLaddress = "ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/Elevation/1/ArcGrid/USGS NED 1 " url final = address + name1 + " ArcGrid.zip" print(url final) **Reproject watershed** work folder name = os.path.join(input folder name, "WorkFolder") shapefile if os.path.exists(work folder name) == False: os.mkdir(work folder name) boundary path = os.path.join(input_folder_name, boundary_file) input crs = QqsVectorLayer(boundary path, '', 'oqr').crs().authid() #processing.run('ggis:reprojectlayer',{'INPUT': full input path, 'TARGET CRS':'EPSG:10267 processing.run('native:reprojectlayer', {'INPUT': boundary path, 'TARGET CRS':'EPSG:4326', Mosaic -> reproject -> clip raster(s) input list = [os.path.join(work folder name, cur raster) for cur raster in raster print("Merging Raster...") processing.run("gdal:merge", {'INPUT':input list, 'OUTPUT':work folder name + "/merged rast.tif"}) print("Projecting Raster...") processing.run('gdal:warpreproject', {'INPUT': work folder name + "/merged rast.tif", 'TARGET CRS' print("Clipping Raster...") processing.run('gdal:cliprasterbymasklayer',{'INPUT': work folder name + "/proj rast.tif", 'MASK': print("DEM prepared successfully!!!")

Data Connectors

What are they?

- Help retrieve remote data (NASA, USGS, field sensors, etc.) and make available in scientific workflows
- > Abstract away specifics of implementation
- > Data sources, sinks in a workflow

Reusable Data Connectors
 HTTPS SFTP OpenDAP Globus THREDDS WS/WFS

Remote Data Sources (under consideration)

NASA	MODIS, SMAP, other Earthdata DAACs
USGS	Elevation, land use, hydrography, Gage, NLDI
USDA	Soil, land cover, land use
CUASHI	Rainfall, Hydroshare resources
EarthStat	Crop data
FAO	Arable land, harvest data
CIESIN	Population data
EPA	Water quality
Others (no API yet)	Open Data Cubes, Google Earth Engine, ESS-Dive

Data Processors

What are they?

- Data transformers that can be plugged into a workflow
- Range from simple geospatial data transformation to scientific simulation models
- Pre and post processing

Pluggable
 Data
 Processor

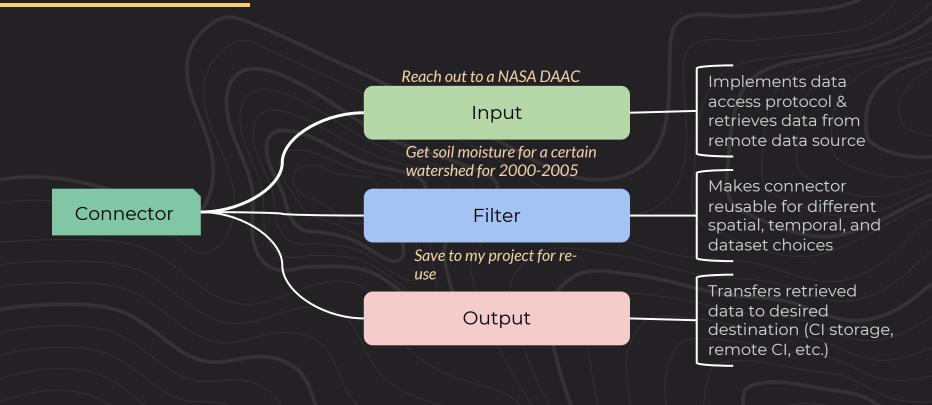
Models

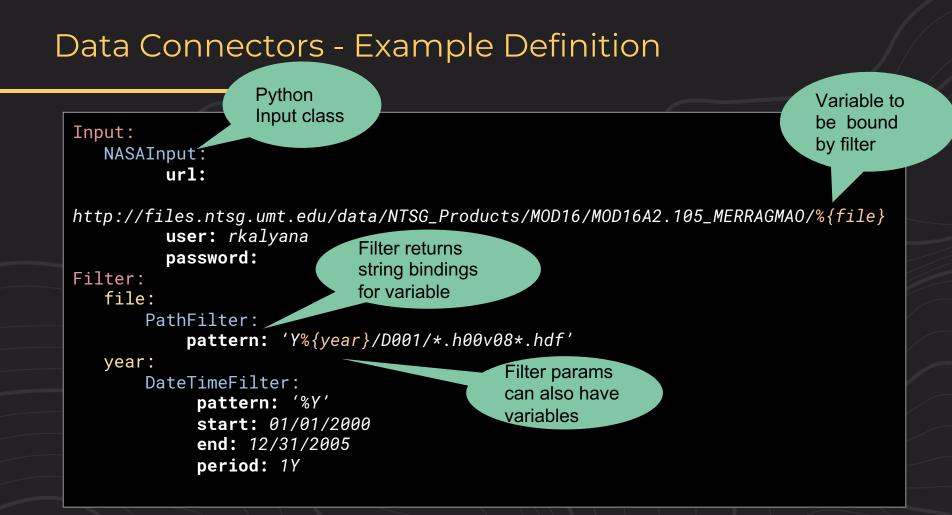
- Aggregate
- Your own code
- Filter
- Visualize
- Transform

Processing Operations (under consideration)

Domain Independent	Reproject, resample, format transformation, filter, mosaic, clip/mask, aggregate (spatial & temporal), visualization, reclassification
Hydrology	Terrain analysis, flood models
Digital Ag	Query, spatial/temporal filter, ML training, decision support
Sustainability	Downsample, (weighted) aggregate, FEWS models

Plug-and-play Workflow Composer


Plug-and-Play Geospatial Data Pipeline Composer (GUI and code interfaces)

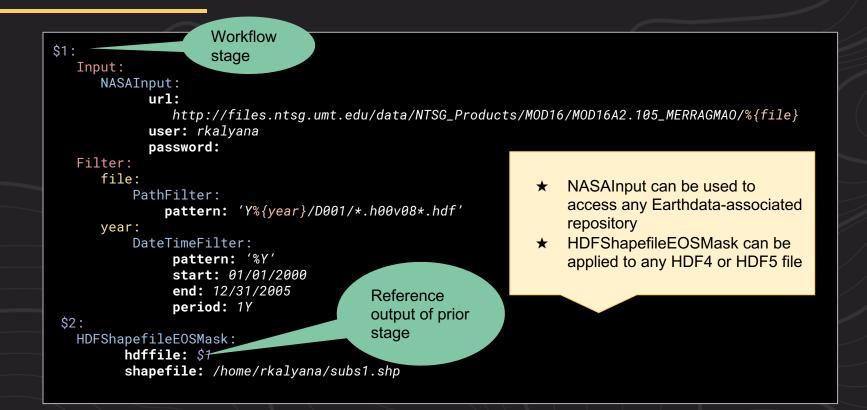

What is this?

- Framework for composing data connectors and processors into scientific workflows
- Transforms abstract workflow into actual workflow executing on heterogeneous compute

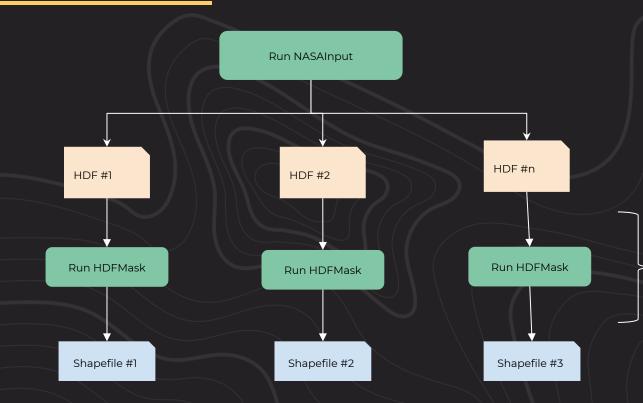
on Implementation

Data Connectors - Design

Data Processors - Example Definition


Python processor class implementing masking operation

HDFShapefileEOSMask:


hdffile: /data/workflow263/mod16Y2001D1T1200.h00v08.hdf
shapefile: /home/rkalyana/subs1.shp

Processor specific params; validated during instantiation

GeoEDF Workflow - Example Definition

Actual Scientific Workflow

Parallel compute jobs generated dynamically based on number of data files at each level

Putting It All Together

Workflow Definitions

Users pick and choose different connector & processor classes to² define a workflow

> (as YAML file/via GUI/through API)

Workflow Execution

Workflow engine transforms declarative specification into concrete Pegasus scientific workflow and executes on heterogeneous compute

GeoEDF Building Blocks

Users contribute various connector (Input, Filter, Output), and processor classes

Interoperability & FAIR Science

How do we do FAIR?

- Data publications can be searched using their content metadata, accessed via APIs & used in workflows
- Automatically track metadata, provenance in workflows
- Launch tools, workflows seamlessly from a remote CI (with remote data inputs)

Resource Interoperability Interfaces

- Tools as a Service
- Publication API
- Interoperation with other CIs
- Provenance

Collaboration and Interoperability

Broader Impacts - Community

Usable by especially interdisciplinary research domains

- a. Critically important to research supporting the SDGs
- b. Data synthesis, multi-scale analysis
- c. Lower technology barrier (e.g., seamlessness, extensibility)

Help domain researchers meet new FAIR data/software requirements (e.g., journal, funding agencies)

Help domain science with broader dissemination (e.g., decision makers, public)

Future workforce training (learn and start with good practices)

Opportunities

Interoperate with other Cls Users contribute connectors and processors

Engage data producers to expose data through connectors

Questions

Questions?

Data to Action Webinar: Increasing the Use and Value of Earth Science Data and Information

October 25th, 2019 | 1:00 pm ET

www.esipfed.org @ESIPfed | #ESIPfed ESIP is supported by

and 120+ member organizations

Putting Data to Work: Building Public-Private Partnerships to Increase Resilience & Enhance the Socioeconomic Value of Data <u>2020esipwintermeeting.sched.com</u>

2020 Winter Meeting

January 7-9, 2020 Bethesda North Marriott, Bethesda, MD

www.esipfed.org @ESIPfed | #ESIPfed ESIP is supported by

and 110+ member organizations

Engagement Ops.

DISCOVER

Find people and tools to make your data findable, accessible, interoperable, and reusable.

COLLABORATE

Join-in or create a new collaboration area around your Earth science data challenges.

INNOVATE

Utilize small-grant funding to build or expand Earth data technologies.

NETWORK

Extend your network. Build connections across federal agencies, the private setor, and academia.

Encourage your organization to join ESIP's 110+ member organizations. Unlock membership benefits: start new collaborations, apply for funding, and more. Stay up-to-date on all things ESIP by signing up to receive Monday Updates: <u>http://eepurl.com/rJQYn</u>.

Thank you!

Upcoming Webinars

- November 13th at 4 pm ET:
 - Data for our Planet: Increasing the Use and Value of Global Information Infrastructures to Support Resilient Cities, Disaster Risk Reduction and Infectious Diseases (Lesley Wyborn & Erin Robinson)
- Check the webinar homepage: <u>https://www.esipfed.org/webinars</u>.
- Webinar recordings are shared on the ESIP YouTube Channel.