
Getting things done with Tupyter Notebooks

Chris Turner

Data Librarian at <u>Axiom Data Science</u> Information Manager for <u>NGA LTER</u> <u>chris@axiomdatascience.com</u>

Getting things done, with what?

A Jupyter Notebook is an IDE, kind of. But really it's just a file format that allows a mix of runnable code blocks, and documentation (markdown).

Getting things done, with what?

Project Jupyter

- Open source
- Non-profit
- Evolved from IPython Project IPython Interactive Computing
- Notebooks, and more!

How to get started for free*

Jupyter

- jupyter.org
- Binder

Big Names

- Google Colab
- Azure Notebooks
- Watson Studio Cloud

Research / Publishing

- CodeOcean
- Kogence
- Research Workspace

Data Science / ML

- Kyso
- ModeAnalytics
- Quantopian

Training / Education

- CoCalc
- Notebooks
- Gryd
- DataQuest
- Kaggle

Reviews and Discussion

- on blogs
- medium
- dataschool.io

... or, host your own server

How do we use Tupyter Notebooks?

Data management and processing

ingest, processing scripts

Demonstration of capabilities and processes

novel analyses and approaches

Compute near the data

don't need to transfer large files or collections

How do we use Jupyter Notebooks?

Data Management and Processing Example: Ingest, style, and map Audubon data

Project:

- 1000+ spatial datasets
- Re-style layer to match print version of the <u>EABCBS</u>
- Create interactive data portal

Why Notebooks:

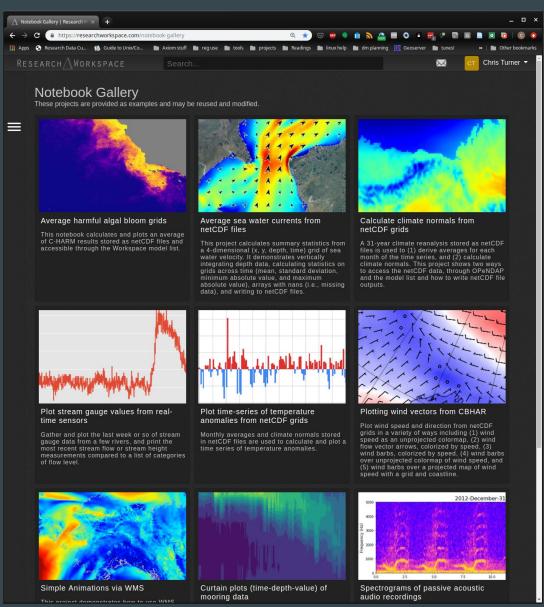
- Unique data
- Transparent to client
- Shareable
- One-off work

The Ecological Atlas of the Bering, Chukchi, and Beaufort Seas

- Print (pdf)
- Web

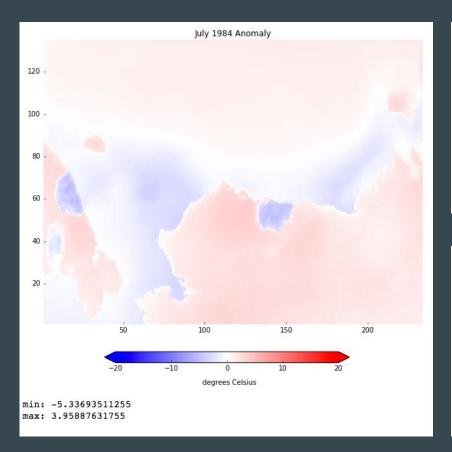
Audubon data					
		C Add Hover Tool.ipynb	57.7 kB	John Duna	Jun 04
		add-layer-group-tags.ipynb	249.5 kB	Trevor Gol	Jun 04
0		add-modules-to-portals.ipynb	104.3 kB	Trevor Gol	Jun 21
		add-raster-layers.ipynb	59.2 kB	Trevor Gol	May 07
		add-updates-layers.ipynb	112.3 kB	Trevor Gol	May 03
		add_mammal_layers.ipynb	192.3 kB	Trevor Gol	May 03
		add_oikos_layers.ipynb	94.1 kB	Trevor Gol	Apr 05
		apply_fish_styles.ipynb	2.7 kB	Trevor Gol	Apr 05
0		Cassociate_styles_with_layers_Geoser	49.4 kB	John Duna	May 30
		land bounds.xml	454.4 kB	John Duna	Jun 03
0		ocollapse-paau-regular-use-concent	78.8 kB	Trevor Gol	Jun 11
		collapse-updated-layers.ipynb	227.2 kB	CT Chris Turner	about an
		Create Species Pivoted.sql	11.0 kB	John Duna	Apr 17
		create-composite-mammals-table.i	5.0 kB	Trevor Gol	Apr 11
		create_composite_fishes_table.ipynb	4.8 kB	Trevor Gol	Apr 03
		create_schemas.sql	234 B	Malcolm H	Jan 31, 2
		create_schemas.txt	234 B	Melany Wil	Jan 16
	11	crop-sealion-range-to-study-area.i	102.0 kB	Trevor Gol	Jun 11

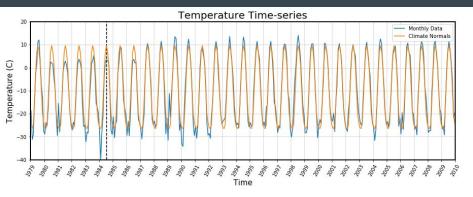
How do we use Tupyter Notebooks?

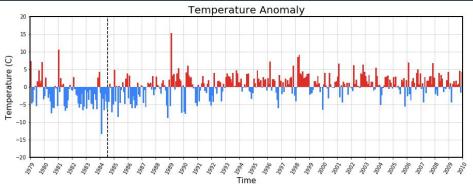

Example Demonstrations: Research Workspace Notebook Gallery

Project(s):

 Use Notebooks to process or analyze assets in the Axiom data system

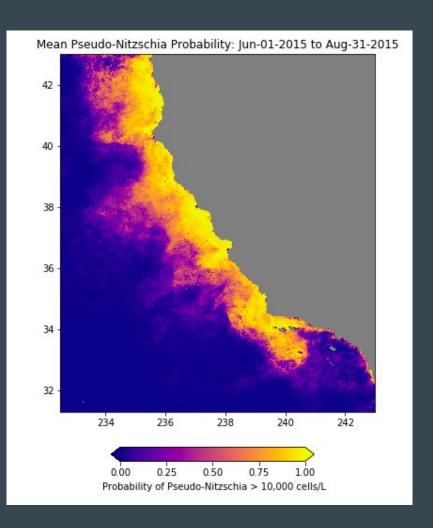

Why Notebooks:


- Shareable
- Documentable
- Interactive

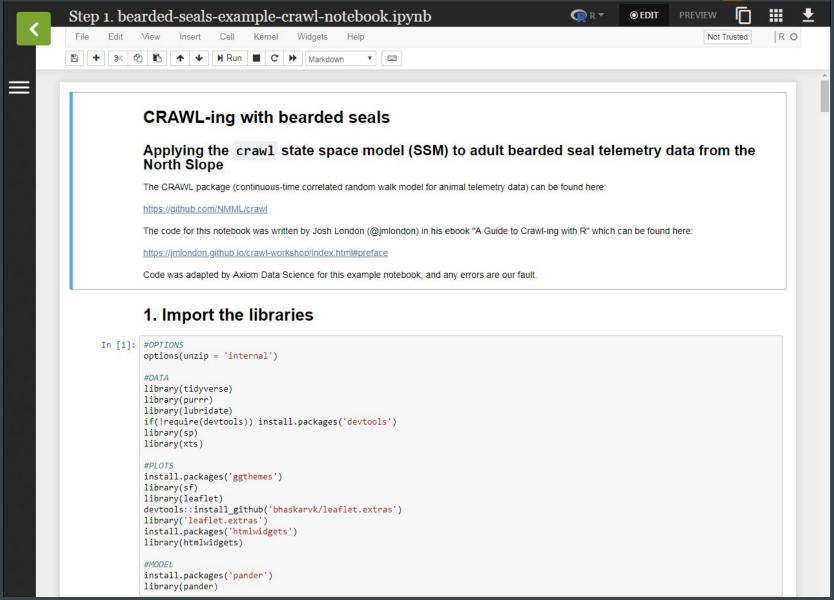


https://researchworkspace.com/notebook-gallery

Time-series Anomalies: CBHAR model



- Calculate climate normals on a 31-year long, multi-terabyte dataset
- Then plot temperature anomalies over a region


Averaging Many Gridded Files: C-HARM model

```
# We have many files in the directory, but we want to subset those by time. In this example,
# we'll just subset by a start and end date.
start_day = datetime.datetime(2015,6,1,0,0)
end day = datetime.datetime(2015,8,31,0,0)
# These lines build a datacube of time slices between our start and end dates.
# expanding the dimensions as it goes.
first = True
for i in trange(nfiles):
    netcdf = netCDF4.Dataset(filenames[i])
    # extract the time, turn it into a date
    t = np.array(netcdf.variables['time'])[0]
    t = netCDF4.num2date(t, time var.units, time var.calendar)
    # compare the date of the time slice to our set start and end dates
    if start_day <= t <= end_day:
        # get the data from the netcdf file, remove the first axis (time)
        thisdata = np.array(netcdf.variables[variable_name])[0,:,:]
        if first:
            # If this is the first filename, create an array
            datacube = np.expand dims(thisdata, axis=0)
            first = False
        else:
            thisdata=np.expand dims(thisdata, axis=0)
            # If this is not the first filename, add to the existing array
            datacube= np.append(datacube, thisdata, axis=0)
    # close each file that we open
    netcdf.close()
      1222/1222 [00:24<00:00, 50.09it/s]
# Apply the mask to the datacube
datacube = ma.masked_values(datacube, -999.)
```

 Averaging gridded files between a start and end date

Test Implementation: CRAWL State Space Model

https://jmlondon.github.io/crawl-workshop/crawl-practical.html

Test Implementation: CRAWL State Space Model

```
n <- length(unique(sf pred lines$deployid))
pal <- colorFactor(topo.colors(5),
                   domain = sf pred lines$deployid)
pal2 <- colorFactor(ggthemes::hc pal(palette = "default")(n),
                   domain = sf pred lines$deployid)
 #sf::st transform(4326) %>%
m <- leaflet() %>%
  addProviderTiles("Esri.OceanBasemap") %>%
# addCircleMarkers(data = sf locs, radius = 2,
                   weight = 2, opacity = 1,
                   color = ~pal(deployid)) %>%
  addPolylines(data = sf_lines, weight = 2, color = ~pal(deployid)) %>%
  addPolylines(weight = 2, data = sf::st transform(sf pred lines,4326), color = ~pal2(deployid)) %>%
# addLegend(pal = pal, values = ~deployid, labels = ~deployid) %>%
  suspendScroll()
       East Siberian Sea
```

Animation: CRAWL + models

ylot-s

plot-size-tests.ipynb

Purpose

This notebook uses an animal track through time to extract data from other related datasets. It resamples the track to consistent, hourly increments (taking the mean location). Then it extracts bathymetry data along the track from the ARDEM 2.0 dataset, and then extracts sea surface temperature from the GHRSST MUR data product and sea ice concentration from NSIDC. We save extracted values to CSV and create an animation of the track, sea ice, and graphs.

Inputs

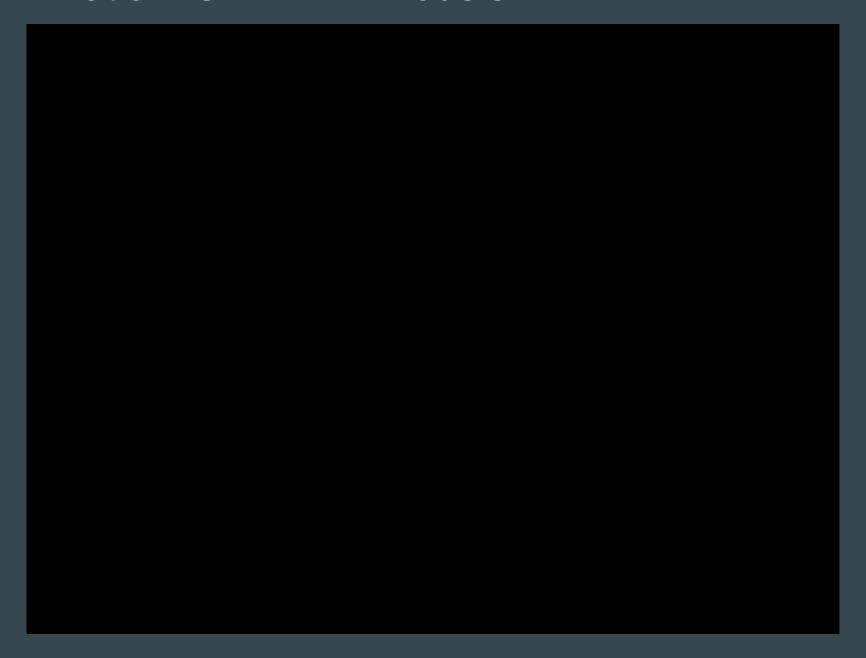
- Bathymetry data from ARDEM 2.0: Alaska Regional Digital Elevation Model 2.0 from Seth Danielson. It shares values with the International Bathymetric Chart
 of the Arctic Ocean, but extends further to the south. It's has 1-km resolution spacing.
- SST and ice fraction values from MUR: Sea surface temperatures and sea ice fractions are extracted from the GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (.01deg/1km).
- NSIDC Sea Ice Concentration: Sea ice concentration values are extracted from the NSIDC Sea Ice Concentration (Nimubus-7 and Near-Real-Time DMSP).

Outputs

This notebook has two outputs.

- 1. It saves the hourly, extracted track data to a CSV file.
 - date_time: Date and time of the format YYYY-MM-DD HH-MM-SS (e.g., 2011-06-18 04:00:00)
 - . Longitude: decimal degrees, positive east (0-360), epsg:4326
 - Latitude: decipmal degrees, epsg:4326
 - · geometry: lat/lon values of points as WKT, for convenience
 - km_traveled_per_period: the distance calculated between each point, which is a measure of if the tag was hanging around in one location or
 moving between locations. In this example we've resampled the track to be hourly, but that's somewhat arbitrary, and this distance traveled should
 not be confused with speed in the water (e.g., if an animal does very fast laps or dives, that would not be reflected in this value).
 - . bathymetry: Elevation of land surface in meters (negative = depth) extracted from ARDEM
 - . sst c: Sea surface temperature extracted from GHRSST MUR.
 - sst ice fraction: Sea ice fraction extracted from GHRSST MUR model.
 - nsidc_ice_percent: Sea ice concentration extracted from the NSIDC satellite data.
- 2. It writes an mp4 to the workspace.

Modification History


2018-10-17: Prototype complete (W. Koeppen, Axiom)

2018-11-05: Cleaned up docs (W. Koeppen, Axiom)

2018-11-20: reworked to include sea ice in movie (W. Koeppen, Axiom)

2019-01-30: adding metadata information (W. Koeppen, Axiom)

Animation: CRAWL + models

Strengths of Jupyter Notebooks

They're easy, interactive, and (can be) very readable

- Shareable
 - https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Not ebooks
 - https://www.researchworkspace.com/notebook-gallery
 - https://plot.ly/ipython-notebooks/
 - https://unidata.github.io/python-gallery/examples/index.html
 - https://proba-v-mep.esa.int/documentation/manuals/notebook-sample-ga llery
- Language and kernel options:

Python, R, Julia, and 130+ other kernels

Downsides of Jupyter Notebooks?

- Easy to make mistakes
 - All cells must be run in order
 - No linting, syntax highlighting, etc.

- Encourage bad habits
 - Difficult to version, merge, and test code
 - Environment can be mysterious

Downsides of Jupyter Notebooks?

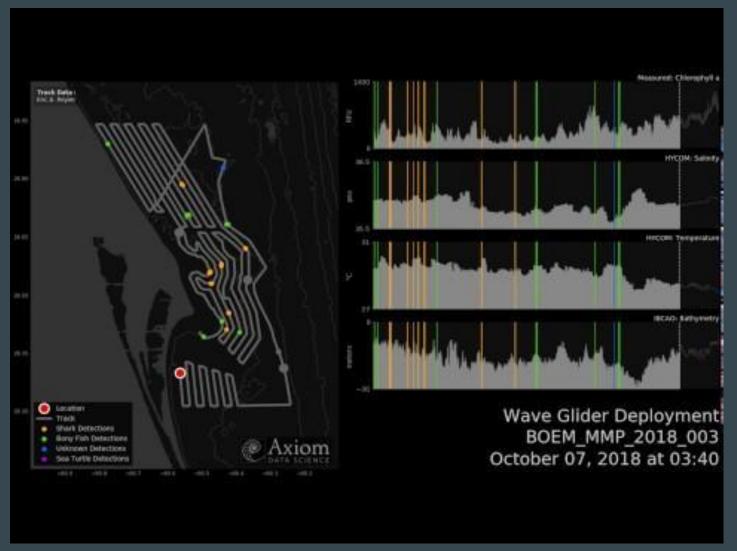
- Easy to make mistakes
 - All cells must be run in order
 - No linting, syntax highlighting, etc.

- Encourage bad habits
 - Difficult to version, merge, and test code
 - Environment can be mysterious

Criticisms:

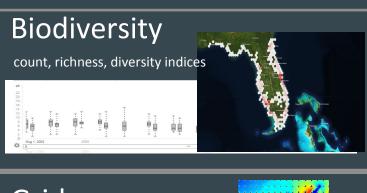
- Why Jupyter Is Not My Ideal Notebook
- I Don't Like Notebooks
- 5 Reasons Why Jupyter Notebooks
 Suck

Best Practices:


- Jupyter Notebook Manifesto
- How to Version Control Jupyter
 Notebooks
- Making Publication Ready Jupyter
 Notebooks

Done.

Questions?


chris@axiomdatascience.com

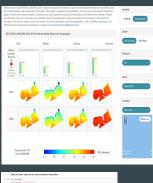
More Animations

Another example: https://twitter.com/secoora/status/1040379622486147078

Data Types in the Axiom Data System

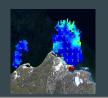
Platforms

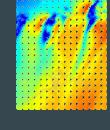
moorings, shore stations



Products

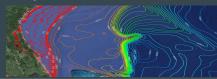
skill assessment, shoreline change, etc.

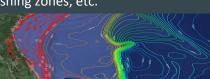




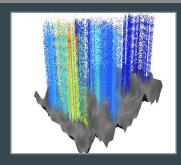
Grids

models, satellite, radar





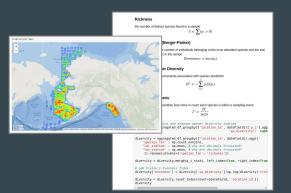
GIS

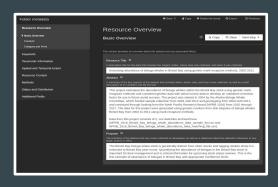

Habitat types, bathymetry, fishing zones, etc.

Moving **Platforms**

Gliders, Cruises

Unstructured Data





The Research Workspace

- Organize into projects, research campaigns and organizations
- Coordinate data exchange across networks, groups, programs
- ISO 19115-2/19110 metadata editor
- Execute server side Jupyter Notebooks on uploaded datal
 AND any data in Axiom Data System
- Mint DOIs
- Archive pathway to DataONE (NCEI coming soon)

