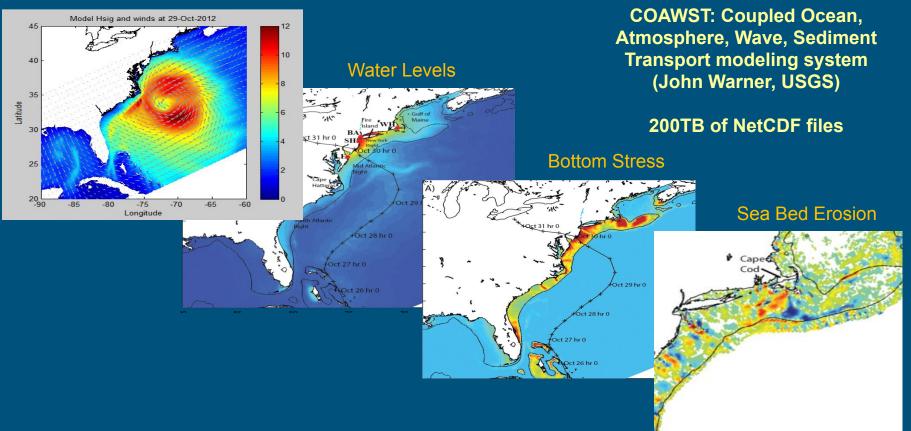
Crunching Model Data in the Cloud

Rich Signell, USGS ESIP Summer Meeting, July 17, 2019

Storming the Cloud

Rich Signell, USGS ESIP Summer Meeting, July 17, 2019


The Story of Dan

Rich Signell USGS ESIP Summer Meeting, July 17, 2019

Sediment Transport Modeling at USGS

Wind and Waves

welcome to join. To add your name to the list, fork the source for this site on GitHub, add you details to the file _data/people.yml, and submit a pull request. The easiest w to do this is to directly edit the file on GitHub.

Pangeo is an open group. Anyone who agrees with our mission and vision is

A community platform for Big Data geoscience

- First ever Pangeo developers meeting? community

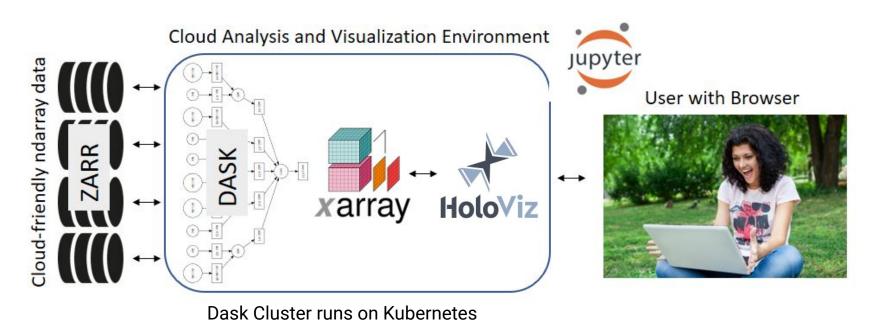
- How fast can the Met Office's solution pull data from S3?
- #198 opened 17 days ago by mrocklin

#196 opened 19 days ago by rabernat

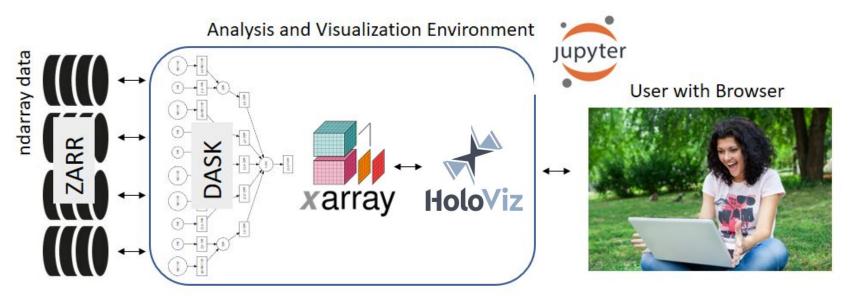
Pangeo use case: Advanced regridding using ESMF/ESMpy/OCGIS/xESMF/Xarray/Dask #197 opened 17 days ago by jhamman

intermittent errors during blosc decompression of zarr chunks on pangeo.pydata.org

Ryan Abernathey


Lamont Doherty Earth Observatory

- - - - **12**
 - **16**


 - **18**

 - Q 14

Pangeo Cloud Environment

Pangeo Laptop/HPC Environment

Dask Cluster runs on HPC or local machine

Run Jupyter on remote machine

On remote machine: \$ bash start_jupyter.sh

```
#!/bin/bash
jupyter notebook --no-browser --ip=`hostname` --port=8888
echo "ssh -N -L 8888:`hostname`:8888 -L 8787:`hostname`:8787
$USER@gamone.whoi.edu"
```

On local machine:

\$ ssh -N -L 8888:gamone:8888 -L 8787:gamone:8787 rsignell@gamone.whoi.edu

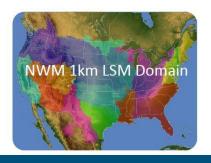
Dan's Task: Calculate mean salinity from 700GB dataset

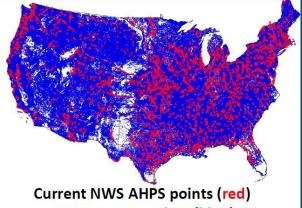
Method #1: Run Python locally, download 700GB data, access Netcdf files locally

Method #2: Run Python locally, access remote data using OPeNDAP

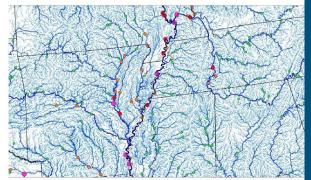
Method #3: Run Python remotely on Sand, access NetCDF files on Sand

Method #4: Run Python remotely on Poseidon, access NetCDF files on Poseidon


Method #5: Run Python on cloud, access Zarr dataset from Cloud


NWM V1.0 Output

(Cosgrove et al)


Hydrologic Output

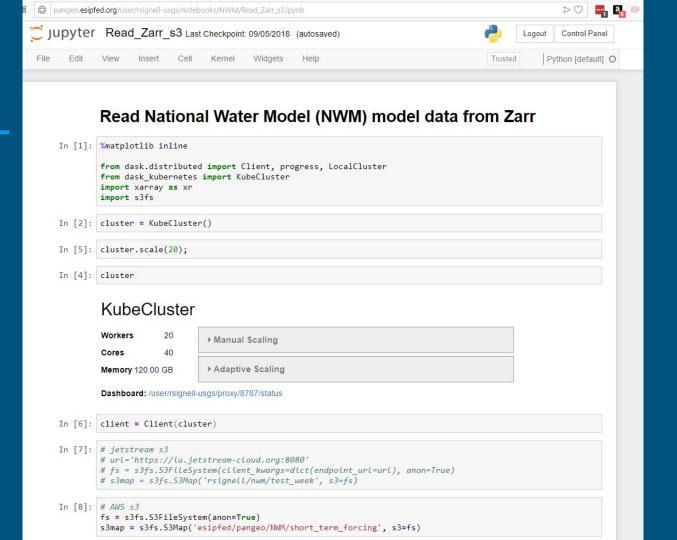
- -River channel discharge and velocity at 2.7 million river reaches
- -Reservoir inflow, outflow, elevation
- -Ponded water depth and depth to saturation (250 m CONUS+ grid)
- Land Surface Output
 - -1km CONUS+ grid
 - -Soil and snow pack states
 - -Energy and water fluxes
- Direct-output and derived products (e.g. stream flow anomalies)

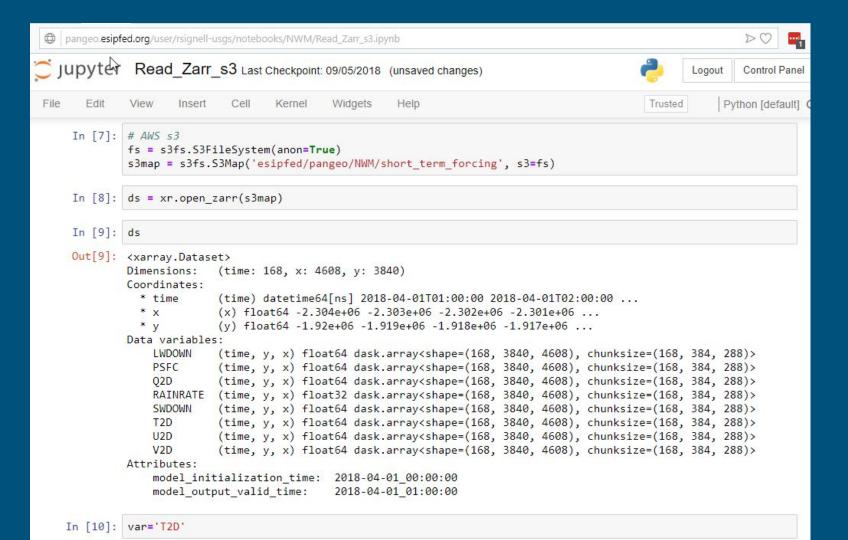
NWM output points (blue)

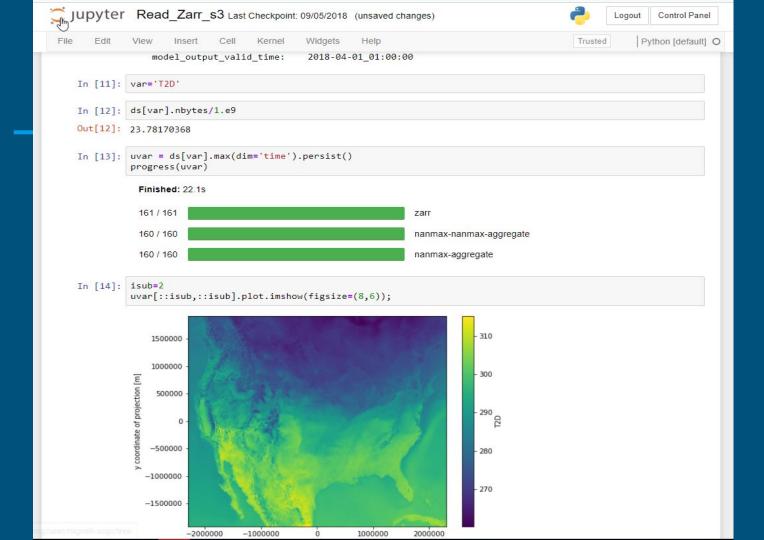
Current NWS River Forecast Points (circles) Overlaid with NWM Stream Reaches

One month of forcing and output is 15TB

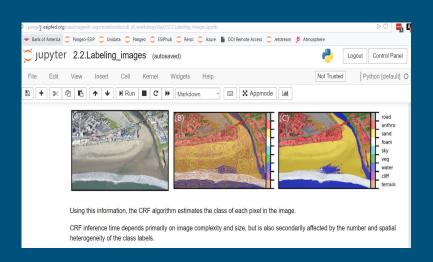
NWM is part of the Big **Data Project**


Forecast data is being pushed to AWS


(24 year retrospective is available on Open Commons Consortium and AWS)


But there is a problem...

National Water Model Demo



Pangeo is not just for big data...

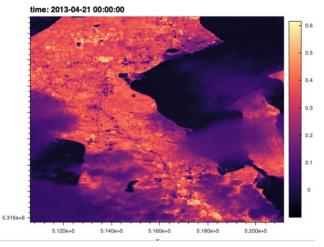
USGS Deep Learning Workshops

Flagstaff, July 10-12 & Denver, Sep 25-27, 2018

35 Students used ESIP Pangeo on AWS with no issues. Data was stored on S3, no data moved from Cloud. Students only needed their web browsers.

[ec2-user@ip-172-31-29-161 ~]\$		grep jupyter	
jupyter-30-2d06	1/1	Running	0
jupyter-abock80	1/1	Running	0
jupyter-afoxgrover-2dusgs	1/1	Running	0
jupyter-amun0113	1/1	Running	0
jupyter-bletcher	1/1	Running	0
jupyter-cjlegleiter	1/1	Running	0
jupyter-collincr	1/1	Running	0
jupyter-corinacd	1/1	Running	0
jupyter-couvillionb	1/1	Running	0
jupyter-cto22	1/1	Running	0
jupyter-dbuscombe-2dusgs	1/1	Running	0
jupyter-debuna	1/1	Running	0
jupyter-dmillar-2dusgs	1/1	Running	0
jupyter-dvaranka	1/1	Running	0
jupyter-ebulliner-2dusgs	1/1	Running	0
jupyter-esturdivant-2dusgs	1/1	Running	0
jupyter-hollybeck1	1/1	Running	0
jupyter-jacurtis-2dusgs	1/1	Running	0
jupyter-jennabrown-2dusgs	1/1	Running	0
jupyter-johnsamstone	1/1	Running	0
jupyter-jwfulton-2dusgs	1/1	Running	0
jupyter-khop-2dusgs	1/1	Running	0
jupyter-leonfoks	1/1	Running	0
jupyter-linhunt	1/1	Running	0
jupyter-mjcashman	1/1	Running	0
jupyter-nrapstine-2dusgs	1/1	Running	0
jupyter-rsleeter0710	1/1	Running	0
jupyter-rviger-2dusgs	1/1	Running	0
jupyter-ryan-2dlima	1/1	Running	0
jupyter-sarundel	1/1	Running	0
jupyter-talbertc-2dusgs	1/1	Running	0
jupyter-tmercier	1/1	Running	0
jupyter-tnwillia	1/1	Running	0
jupyter-tomtomatron	1/1	Running	0
jupyter-zdefne-2dusgs	1/1	Running	o
	•	3	

Pangeo is not just for model output



Cloud Native Geoprocessing of Earth Observation Satellite Data with Pangeo

If you are familiar with satellite imagery you've likely heard that we are entering a "golden era" of Earth Observation. It's true! New satellites are generating Petabyte-scale publicly available archives of imagery at unprecedented rates, enabling new insights and fast global impacts.

Cloud Native Landsat Analysis with Pangeo

Full resolution NDVI calculated from Landsat 8 image from 2013-04-21

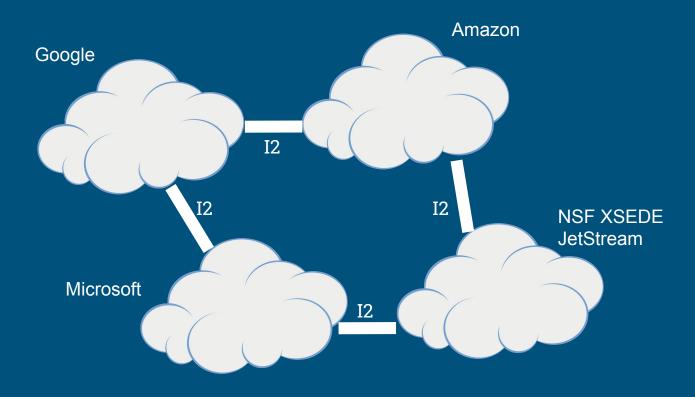
We've developed an example Cloud Native quantitative analysis of Landsat 8 satellite imagery. What is special about this example is that the analysis is easily reproduced, scalable, and interactive: 100 Gigabytes of Landsat 8 images covering Washington State (representing the entire archive back to 2013 03-21) are found using NASA's Common Metadata Repository (CMR). Then, using URLs instead of local file paths, the

Normalized Difference Vegetation Index (NDVI), a simple landcover

Pangeo is not just for model output

PanNeuro: leveraging a community-based approach for big data neuroscience

BRAIN Initiative PI meeting, April, 2019


Ariel Rokem
The University of Washington eScience Institute

Follow along at: https://arokem.github.io/2019-BRAINI-PanNeuro-slides/

The Future: All data proximate "in the I2 Sense"

Cloud Benefits: Scales with users and demand; Unlimited size datasets; Massive datasets can be crunched with many processors; Users don't need to buy or maintain fancy hardware, software or fast internet

Cloud Benefits: Scales with users and demand; Unlimited size datasets; Massive datasets can be crunched with many processors; Users don't need to buy or maintain fancy hardware, software or fast internet

