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Data Uncertainty

• Data uncertainty represents lack of knowledge about a
geophysical quantity of interest (QOI) after observing relevant
data.

• The true value of the QOI, X, is generally unknown, so
plausible/likely values must be characterized.

• Probability offers a coherent framework for representing the
distribution of the QOI, or the plausible error X̂ − X, given an
estimate X̂ based on observed data.

• Earth science data records are relying on increasingly complex
methods for constructing estimates X̂.

• Remote sensing retrievals using satellite radiances and
radiative transfer models (Rodgers, 2000)

• Data assimilation using Earth system models and multiple
data sources
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VVUQ

• National Research Council report (NRC, 2012) places
uncertainty quantification (UQ) for complex physical systems in a
probabilistic framework.

• UQ methodology seeks to identify the impact of sources, or
contributors, to the distribution of the error for a quantity of
interest (QoI).

• A probabilistic framework benefits from representing the system
as a data-generating process, with the QoI as an outcome.

• Monitoring the process includes describing the prediction error
under a particular set of conditions, such as a particular version
of a retrieval algorithm.

• Improving the process can result from improved understanding
of error sources.

• UQ has a role in both monitoring and improvement.
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• Remote sensing observing system is a complex data-generating
process with several key components.

• True top-of-atmosphere radiance is a function of
atmospheric state.

• Instrument observes noisy radiance.
• Retrieval algorithm produces estimate of state.
• Science data system scales processing.

• Objective is inference on the state given the observed radiances,
an inverse problem.
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Approaches
Multiple approaches for probabilistic assessment of observing
systems

• In situ validation: Summarize the error distribution, X̂ − X, where
substantially more accurate and precise observations of X are
available.

• Simulation studies: Monte Carlo experiments with the
data-generating process, estimation procedure, and ensembles
of user-specified true QOIs X.
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Error Distributions
• How should uncertainty be summarized?

• Bias, variance may be sufficient for a symmetric error
distribution.

• Quantiles may be more appropriate for skewed, mutli-modal
distributions.
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Current Work

• Toward Unified Error Reporting (TUNER): International effort to
provide validation-based error assessment for retrievals of
comparable QOIs from different satellites.
http://www.issibern.ch/teams/tuner/

• NASA AIST effort to develop tools for simulation-based UQ for
retrievals (Hobbs et al., 2017)

• Application to OCO-2 and AIRS Level 2 retrievals

• JPL internal initiative on UQ for Earth science applications
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