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High Performance Computing:  Alternative Approaches

• Dataflow / Workflow / Graph
§ Taverna

§ Pegasus

§ Spring XD

• Vector Computations
§ Vendor specific

• Message Passing
§ Parallel Virtual Machine (PVM)

§ Message Passing Interface (MPI)

• Shared Memory
§ OpenMP

§ Vendor-specific

• Hybrid OpenMPI / MPI

• Hardware-based approaches
§ VHDL, Verilog - Field Programmable Gate 

Array (FPGA)

§ CUDA – GPU

§ OpenCL – Heterogeneous platforms
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• Master-Worker

§ Condor

§ Apache Spark

• Map-Reduce

§ Apache Hadoop

§ Apache Spark

• Grid Computing

§ Globus Toolkit

§ NASA Information Power Grid (IPG)

§ NSF TeraGrid

• Cloud Computing

§ Amazon Web Services (AWS)

§ Microsoft Azure

§ Google Cloud Platform

§ IBM Cloud
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HPC Showdown:  Spark vs MPI

• Jonathan Dursi’s Blog [www.dursi.ca]: “HPC is dying, and MPI is killing it”
§ “In [the modern era of internet-scale big data], one might expect that programmers with HPC 

experience – who have dealt routinely with terabytes and now petabytes of data, and have 
years or decades of experience with designing and optimizing distributed memory algorithms –
would be in high demand.  They are not.”

§ “MPI is at the wrong level of abstraction for application writers [and] tool builders”
§ “MPI is more than you need for modest levels of parallelism [and] less than you need at 

extreme levels of parallelism.”
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HPC Showdown:  Spark vs MPI (cont.)

• J. L. Reyes-Ortiz, L. Oneto, D. Anguita, ”Big Data Analytics in the Cloud: Spark on 
Hadoop vs. MPI/OpenMP on Beowulf”, 2015 INNS Conference on Big Data, Vol. 
53, 2015, pp. 121-130.

– “the MPI/OpenMP implementation is much more powerful than the Spark on Hadoop 
alternative in terms of speed. [For KNN], it can be more than 10 times faster.”

– “MPI/OpenMP scales better than Spark.”
– “Nevertheless, Spark on Hadoop may be preferred because it also offers a distributed file

system with failure and data replication management, allows the addition of new nodes at
runtime, and provides a set of tools for data analysis and management that is easy to use,
deploy and maintain.”

• MPI offers low level control and highly optimized communications
§ For applications that cannot be carved up into nice independent partitions, MPI performance 

can greatly exceed that of Spark, which was not designed for that use case.

• Spark offers more than just computational speed
§ Excellent performance across clusters for algorithms that are “embarrassingly” parallel.
§ Easy to deploy and manage on a cluster computer
§ Excellent support by cloud vendors
§ Convenient API at a level of abstraction that frees application developers to focus on numerical 

operations rather than inter-process communications.
§ Automatic rescheduling of tasks hosted on failed or overloaded nodes.
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The NEXUS Architecture

NEXUS: The Deep Data Platform
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• Analytic Platform – Spark- based 
domain-specific analytics 

• Data Access – tile and collection-based 
data access 

• Cloud Platform – portal and custom 
VMs 

• Extract/Transform/Load (ETL) System 
– Ingest and stage data 

• Deep Data Processors – metadata, 
statistics, and tiles 

• Index and Data Catalog – horizontal-
scale geospatial search (Solr) and tile 
retrieval (Cassandra)
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From Files to Tiles

30-Year Time Series of archival HDF & netCDF files (daily or per orbit)

Fast &
Scalable

Display Variables on Map Latitude-Time Hovmoller Plot Aggregate Statistics

Cassandra DB Cluster & 
Spark In-Memory
Parallel Compute!

Chunk Chunk Chunk

Chunk Chunk Chunk

Chunk Chunk Chunk

…

SMAP MODIS GRHSST JASON

Meta
Data

Meta
Data

Meta
Data

Meta
Data …

Solr DB Cluster

Metadata (JSON): Dataset and granule metadata, 
Spatial Bounding Box & Summary Statistics

Subset Variables & 
Chunk Spatially

Slow File I/O

Each file contains many high-resolution geolocated arrays

Custom
Analytics
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Map-Reduce Style Computation
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Resilient Distributed Dataset (RDD)

• The RDD is Spark’s abstraction of a dataset as a collection of elements that are partitioned across 
a cluster computer.

• Parallel computations can be applied to an RDD to produce a new RDD.

• Fault tolerant
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NEXUS Spark Analytics Algorithms

Included with NEXUS:
• Area-Averaged Time Series

§ Compute statistics (e.g., mean, minimum, maximum, 
standard deviation) for each time step within a user-
specified spatiotemporal bounding box.  

§ Optionally apply seasonal or low-pass filters.

§ Return result in ascending time order in JSON format.

• Time-Averaged Map
§ Compute a geospatial map that averages gridded 

measurements over time at each grid coordinate within a 
user-defined spatiotemporal bounding box.

• Correlation Map
§ Computes the correlation coefficient at each grid 

coordinate within a user-specified spatiotemporal 
bounding box for two identically gridded datasets.

§ Automatically aligns the time stamps for the two datasets 
being compared.

• Climatological Map
§ Similar to Time-Averaged Map, but only includes 

measurements in the time average that are within a user 
specified month.

8

Application Specific Extension:  Anomaly 
Detection (OceanXtremes)
• Climatology

§ For each day-of-year (1-366) or month (1-12), 
computes a ”typical value” for each coordinate 
grid location.

§ The ”typical value” may be the result of either 
(1) a standard pixel mean with optional 
smoothing over time (e.g. 5-day average), (2) 
Gaussian interpolation [Armstrong and 
Vazquez-Cuervo, 2001], or Empirical 
Orthogonal Function (EOF).

• Daily Difference Average
§ Subtract a dataset from its climatology, then, 

for each time stamp, average the differences 
within a user-specified spatiotemporal bounding 
box.

§ Product can be used to search for anomalies 
compared to the historical norm.

2017 ESIP Summer Meeting

Application-Specific Extension:  Distributed 
Oceanographic Match-up Service (DOMS)
• In Situ Match

§ Discover in situ measurements that correspond 
with a gridded satellite measurement.
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The Spark Approach I

• Multiple Shells/API:
§ Java
§ Scala
§ Python (PySpark)
§ R (SparkR)

• Multiple deployment modes:
§ Standalone
§ Hadoop YARN
§ Apache Mesos

92017 ESIP Summer Meeting
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The Spark Approach I

• Multiple Shells/API:
§ Java
§ Scala
§ Python (PySpark)
§ R (SparkR)

• Multiple deployment modes:
§ Standalone
§ Hadoop YARN
§ Apache Mesos
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• NEXUS run on 8-node cluster computer at JPL running Solr, 
Cassandra, Spark 2.0, with the YARN or Mesos scheduler, 
as indicated in the plot.

• Area-Averaged Time Series over the indicated spatial 
subset (Global, State, City) run with 16-way parallelism.

• Variable plotted:  MODIS-Terra Aerosol Optical Depth (AOD) 
550 nm dark target

• 5,789 daily data granules covering the globe at 1 deg
resolution with date range: 3/1/2000 – 2/29/2016 (3 GB 
input data volume).

• In our experiments, using Mesos consistently yields a 
speedup of 2 to 4 times over YARN.
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The Spark Approach II

• Spark applications follow the master-worker paradigm:
§ Driver program creates the RDD and defines “map” and ”reduce” operations to be applied to 

the data. 
§ Executors (Workers) collectively store the RDD in memory and in parallel perform the specified 

transformations on the data.

• Spark applications follow the map-reduce paradigm:
§ Spark API provides multiple “map” functions:

• map() : operates on dataset elements 
• mapPartitions() : operates on entire data partitions

§ Spark API provides a variety of ways to collect the result of a computation back to the driver 
node, or perform reduction (summarization of the results)
• collect() : merge all elements of the RDD into a single list

– Use with care: the combined dataset must be small enough to fit in the driver node’s 
memory!

• reduce()
• reduceByKey()
• foldByKey()
• combineByKey()

112017 ESIP Summer Meeting
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PySpark Program Structure I

def map(x):
# transform x and return a value
return f(x)

def main():
data = <an array of input data>
…
# Configure Spark
sp_conf = SparkConf()
sp_conf.setAppName(“MyApp”)
sp_conf.set(“spark.executor.memory”, “4g”)
…
sp_conf.set( < more settings >)

# Create Spark Context and initial Spark RDD
sc = SparkContext(conf=sp_conf)
rdd = sc.parallelize(data, num_partitions)

# Perform map computation and collect the results back to
# this head node.
results = rdd.map(map).collect()
<print, save, or plot results>

12

• This is a simple program structure for cases where:
§ All the data fits in memory on the head node.
§ The computation simply maps each element in the data array to an output
§ The results are simply collected back to the head node.  There is no further reduction 

operation.
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PySpark Program Structure II

from operator import add

def map(x):
# transform x and return a key-value pair (example: time, value)
return create_key(x), create_value(x)

def main():
data = <an array of input data>
…
# Configure Spark
sp_conf = SparkConf()
sp_conf.setAppName(“MyApp”)
sp_conf.set(“spark.executor.memory”, “4g”)
…
sp_conf.set( < more settings >)

# Create Spark Context and initial Spark RDD
sc = SparkContext(conf=sp_conf)
rdd = sc.parallelize(data, num_partitions)

# Perform map computation and collect the results back to
# this head node.
map_result = rdd.map(map)
reduce_result = map_result.foldByKey(0, add).collect()

<print, save, or plot results>

13

• This program structure is for cases where a map and reduce operation is required.
§ All the data fits in memory on the head node.
§ The computation maps each element in the data array to an output key-value pair
§ The results are added by key and collected back to the head node.
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Practical Considerations I

• For big data, the map function might have to do the I/O.
§ The canonical Spark tutorial example application, word count, is not a good example of how a 

science algorithm would use Spark!
§ Insufficient memory on a single node.
§ Carefully consider size of the data being collected.
§ Single pass algorithms needed
§ Database query size must be considered

• Very small queries are inefficient
• Very large queries might time out, or result in excessive memory consumption.

• The map function must be static
§ Trying to use a class method as your map function will result in an exception.
§ Python decorator:  @staticmethod
§ Other class variables or methods (“self”) not available inside map function.
§ Can get a program working with python’s built-in map() function first; small additional leap to 

make it work with Spark.

14

from functools import partial
def f(a, b, c):

return a+b*c
f_part = partial(f,1,2)
x = 3
# The following returns the same 
# result as f(1,2,x)
y = f_part(x)

2017 ESIP Summer Meeting
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• The map function takes just one input argument
§ Use a tuple or list to pass in more information if needed.  Unpack 

the tuple inside the map function.
§ If many necessary arguments don’t change from one map call to 

the next, consider using the partial function in the Python functools
module to create a new version of the function with only the 
arguments that change.
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Practical Considerations II

• Control number of Spark executors and data partitions
§ Executors are the worker processes that are instantiated when the Spark cluster is initialized 

and last for the life of the Spark application.
§ A data partition represents a chunk of work that is scheduled for processing on an executor. 

• Spark performance depends on configuration.
§ Number of executors, E
§ Cores per executor
§ Memory per executor
§ Number of data partitions, P
§ Recommended that 2 <= P/E <= 4
§ > 200 configuration parameters in Spark 2.2.0 documentation
§ Nontrivial to squeeze best performance out of Spark for complex applications.

• The Scheduler used can impact performance
§ Spark uses YARN by default
§ Mesos is available as a separate package
§ In our benchmarks, Mesos consistently yielded 2-4 times faster run times compared to YARN.

• The data partitioning scheme used can impact performance
§ Calculations on global data or very large subsets have best performance with a few large tiles.
§ Many small tiles are preferred for calculations on smaller subsets.

152017 ESIP Summer Meeting
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Time Series Analysis

• Compute statistics (e.g., mean, minimum, maximum, standard deviation) for each 
time step within a user-defined spatio-temporal bounding box.  
§ Optionally apply seasonal or low-pass filters.
§ Return result in ascending time order in JSON format.

16

"data": [
[

{
"std": 1.4744961225186004,
"cnt": 2107,
"minSeasonalLowPass": -1.3469589497685839,
"minSeasonal": -1.3745376124526523,
"maxLowPass": 15.435052751030272,
"min": 9.32000732421875,
"max": 15.44000244140625,
"meanSeasonal": -1.9343310558434688,
"ds": 0,
"meanSeasonalLowPass": -1.9285414148993034,
"maxSeasonalLowPass": -2.1962260569545178,
"time": 1427846400,
"maxSeasonal": -2.1875730572324805,
"meanLowPass": 12.279365215634886,
"minLowPass": 9.3507517896462442,
"mean": 12.273533821105957

}
], ...

2017 ESIP Summer Meeting
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Time Series Spark Implementation

t1,t2,………………………………………………………………………………………..…,	tn-1,	tn

tstart <=	t1,	t2,	…,	tn <=	tend

t1,	t2,	…,	tn/p t1+n/p,	t2+n/p,	…,	t2n/p t1+(p-1)n/p,	…,	tn-1,	tn…

Query	NEXUS	for	time	
stamps	in	range

Create	time	range	partitions	
to	serve	as	Spark	tasks

1.	Query	NEXUS	(Solr/Cassandra)	for	data	in	spatiotemporal	bounding	box;
2.	Compute	statistics	for	each	time	stamp;
3.	Package	output	as	array	of	statistics	as	array	of	JSON	

Map	(input)

Spark	tasks	are	scheduled	by	
Mesos (or	YARN)	on	the	Spark	
executors,	which	execute	the	

map	function	for	a	data	partition.

t1,1,	mean,	std,	…
t1,2,	mean,	std,	…,
…
t1,n/p,	mean,	std,	…

t2,1,	mean,	std,	…
t2,2,	mean,	std,	…,
…
t2,n/p,	mean,	std,	…

tp,1,	mean,	std,	…
tp,2,	mean,	std,	…,
…
tp,n/p,	mean,	std,	…

…

Map	(input) Map	(input)

Map	(output) Map	(output) Map	(output)

{t1,	stats1},	{t2,	stats2},	………………………………………………….……,	{tn,	statsn}

Spark’s	collect	function	combines	the	results	
for	each	partition	into	a	single	output	array. ………………………………………

Partition	1 Partition	2 Partition	p
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Time-Averaged Map

• Compute a geospatial map that averages gridded measurements over time at each 
grid coordinate within a user-defined spatiotemporal bounding box.

• Fill values are excluded from the calculation

• Result provided as in JSON format or NetCDF.

182017 ESIP Summer Meeting
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Time-Averaged Map Spark Implementation
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Spatial	bounds	only;	no	measurement	data	yet

spatial	partitions	
1	time	stamp

la
tit
ud

e

longitude

(lat0-lat1,	lon0-lon1,	t0-t1)
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NEXUS	query
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Time-Averaged Map Spark Implementation

20

Spatiotemporal	bounds	only;	no	measurement	data	yet

spatiotemporal	
partitions

la
tit
ud

e

longitude

(lat0-lat1,	lon0-lon1,	t0-t1)
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Time-Averaged Map Spark Implementation
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Spatiotemporal	bounds	only;	no	measurement	data	yet

spatiotemporal	
partitions

la
tit
ud

e

longitude

(lat0-lat1,	lon0-lon1,	t0-t1)
1.	Query	NEXUS	(Solr/Cassandra)	for	
data	in	spatiotemporal	bounding	box	of	
a	partition;
2.	Calculate	two	2-D	arrays:		Sum	and	
Count	for	each	pixel	(ignoring	fills);
3.	Return	key=(lat0,	lat1,	lon0,	lon1)

value=(Sum	array,	Count	array)

Spark	map()
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JJACOB/JPL © 2017 California Institute of Technology. 
Government sponsorship acknowledged.



National	Aeronautics	and	
Space	Administration

Jet	Propulsion	Laboratory
California	Institute	of	Technology
Pasadena,	California

Time-Averaged Map Spark Implementation
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Spatiotemporal	bounds	only;	no	measurement	data	yet

spatiotemporal	
partitions

la
tit
ud

e

longitude

Spark	map()
(lat0-lat1,	lon0-lon1,	t0-t1)

1.	Query	NEXUS	(Solr/Cassandra)	for	
data	in	spatiotemporal	bounding	box	of	
a	partition;
2.	Calculate	two	2-D	arrays:		Sum	and	
Count	for	each	pixel	(ignoring	fills);
3.	Return	key=(lat0,	lat1,	lon0,	lon1)

value=(Sum	array,	Count	array)

(lat0,	lat1,	lon0,	lon1),	(t00,	t01)

…(lat0,	lat1,	lon0,	lon1),	(t10,	t11)

(lat0,	lat1,	lon0,	lon1),	(tp0,	tp1)

Sum Count
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Time-Averaged Map Spark Implementation
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Spatiotemporal	bounds	only;	no	measurement	data	yet

spatiotemporal	
partitions

la
tit
ud

e

longitude

Spark	map()
(lat0-lat1,	lon0-lon1,	t0-t1)

1.	Query	NEXUS	(Solr/Cassandra)	for	
data	in	spatiotemporal	bounding	box	of	
a	partition;
2.	Calculate	two	2-D	arrays:		Sum	and	
Count	for	each	pixel	(ignoring	fills);
3.	Return	key=(lat0,	lat1,	lon0,	lon1)

value=(Sum	array,	Count	array)

(lat0,	lat1,	lon0,	lon1),	(t00,	t01)

…(lat0,	lat1,	lon0,	lon1),	(t10,	t11)

(lat0,	lat1,	lon0,	lon1),	(tp0,	tp1)

Spark	
combineByKey()(lat0,	lat1,	lon0,	lon1)

Sum Count
Sum Count
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Time-Averaged Map Spark Implementation
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Spark	map()
1.	Query	NEXUS	(Solr/Cassandra)	for	
data	in	spatiotemporal	bounding	box	of	
a	partition;
2.	Calculate	two	2-D	arrays:		Sum	and	
Count	for	each	pixel	(ignoring	fills);
3.	Return	key=(lat0,	lat1,	lon0,	lon1)

value=(Sum	array,	Count	array)

Spark	
combineByKey()

…
…

Spatiotemporal	bounds	only;	no	measurement	data	yet

spatiotemporal	
partitions

la
tit
ud

e

longitude

(lat0-lat1,	lon0-lon1,	t0-t1)

(lat0,0,	lat0,1,	
lon0,0,	lon0,1)

(lat1,0,	lat1,1,	
lon1,0,	lon1,1)

(latN,0,	latN,1,	
lonN,0,	lonN,1)

Sum Count
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Time-Averaged Map Spark Implementation
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Spark	map()
1.	Query	NEXUS	(Solr/Cassandra)	for	
data	in	spatiotemporal	bounding	box	of	
a	partition;
2.	Calculate	two	2-D	arrays:		Sum	and	
Count	for	each	pixel	(ignoring	fills);
3.	Return	key=(lat0,	lat1,	lon0,	lon1)

value=(Sum	array,	Count	array)

Spark	
combineByKey()

…
…

Spatiotemporal	bounds	only;	no	measurement	data	yet

spatiotemporal	
partitions

la
tit
ud

e

longitude

(lat0-lat1,	lon0-lon1,	t0-t1)

(lat0,0,	lat0,1,	
lon0,0,	lon0,1)

(lat1,0,	lat1,1,	
lon1,0,	lon1,1)

(latN,0,	latN,1,	
lonN,0,	lonN,1)

Sum Count
Tile	

Average

Spark	map()

Sum	/	Count…
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Spark	map()
1.	Query	NEXUS	(Solr/Cassandra)	for	
data	in	spatiotemporal	bounding	box	of	
a	partition;
2.	Calculate	two	2-D	arrays:		Sum	and	
Count	for	each	pixel	(ignoring	fills);
3.	Return	key=(lat0,	lat1,	lon0,	lon1)

value=(Sum	array,	Count	array)

Spark	
combineByKey()

…
…

Spatiotemporal	bounds	only;	no	measurement	data	yet

spatiotemporal	
partitions

la
tit
ud

e

longitude

(lat0-lat1,	lon0-lon1,	t0-t1)

(lat0,0,	lat0,1,	
lon0,0,	lon0,1)

(lat1,0,	lat1,1,	
lon1,0,	lon1,1)

(latN,0,	latN,1,	
lonN,0,	lonN,1)

Sum Count
Tile	

Average

Spark	map()

Sum	/	Count…
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NEXUS Spark Analytics Algorithms

Compute statistics over time to produce a single 
value for each coordinate grid location.
• Time-Averaged Map

§ Compute a geospatial map that averages gridded 
measurements over time at each grid coordinate within a 
user-defined spatiotemporal bounding box.

• Correlation Map
§ Computes the correlation coefficient at each grid 

coordinate within a user-specified spatiotemporal 
bounding box for two identically gridded datasets.

§ Automatically aligns the time stamps for the two datasets 
being compared.

• Climatological Map
§ Similar to Time-Averaged Map, but only includes 

measurements in the time average that are within a user 
specified month.

• Climatology
§ For each day-of-year (1-366) or month (1-12), computes 

a ”typical value” for each coordinate grid location.
§ The ”typical value” may be the result of either (1) a 

standard pixel mean with optional smoothing over time 
(e.g. 5-day average), (2) Gaussian interpolation 
[Armstrong and Vazquez-Cuervo, 2001], or Empirical 
Orthogonal Function (EOF).

27

Compute spatial statistics to produce a 
single value (or set of statistics) for each 
time stamp. 
• Area-Averaged Time Series

§ Compute statistics (e.g., mean, minimum, 
maximum, standard deviation) for each time 
step within a user-specified spatiotemporal 
bounding box.  

§ Optionally apply seasonal or low-pass filters.

§ Return result in ascending time order in JSON 
format.

• Daily Difference Average
§ Subtract a dataset from its climatology, then, 

for each time stamp, average the differences 
within a user-specified spatiotemporal bounding 
box.

§ Product can be used to search for anomalies 
compared to the historical norm.
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Time Series: Comparison of Giovanni and NEXUS 
Performance
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• NEXUS run on 8-node cluster computer at JPL running Solr, Cassandra, Spark 2.0, Mesos
• Area-Averaged Time Series over the continental United States
• Variable plotted:  TRMM daily precipitation rate (TRMM_3B42_daily_precipitation_V7)
• 6,574 daily data granules covering the globe at 0.25 deg resolution with latitude +/- 50 deg

and date range: 1/1/1998 – 12/31/2015 (26 GB input data volume).
• Giovanni implementation uses highly optimized compiled code based on NetCDF Operator 

(NCO) toolkit, but is single threaded.  NEXUS is implemented in Python and parallelized 
with Apache Spark.

• Giovanni execution time is compared with NEXUS for 16-way and 64-way parallelism.
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Time Averaged Map: Comparison of Giovanni and NEXUS 
Performance
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• NEXUS run on 8-node cluster computer at JPL running Solr, Cassandra, Spark 2.0, Mesos
• Global Time-Averaged Map
• Variable plotted:  TRMM daily precipitation rate (TRMM_3B42_daily_precipitation_V7)
• 6,574 daily data granules covering the globe with latitude +/- 50 deg and date range: 

1/1/1998 – 12/31/2015 (26 GB input data volume).
• Giovanni implementation uses highly optimized compiled code based on NetCDF Operator 

(NCO) toolkit, but is single threaded.  NEXUS is implemented in Python and parallelized 
with Apache Spark.

• Giovanni execution time is compared with NEXUS for 16-way and 64-way parallelism.
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Correlation Map: Comparison of Giovanni and NEXUS 
Performance
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• NEXUS run on 8-node cluster computer at JPL running Solr, Cassandra, Spark 2.0, Mesos
• Global Correlation Map
• Variable plotted:  TRMM daily precipitation rate (TRMM_3B42_daily_precipitation_V7) vs 

TRMM real-time daily precipitation (TRMM_3B42RT_daily_precipitation_V7)
• 5,113 daily data granule pairs covering the globe with latitude +/- 50 deg and date range: 

1/1/2001 – 12/31/2014 (40 GB input data volume).
• Giovanni implementation uses highly optimized compiled code based on NetCDF Operator 

(NCO) toolkit, but is single threaded.  NEXUS is implemented in Python and parallelized 
with Apache Spark.

• Giovanni execution time is compared with NEXUS for 16-way and 64-way parallelism.
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Time Series: Comparison of Global vs. Subset 
Performance of Giovanni and NEXUS
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• NEXUS run on 6 Amazon Web Services (AWS) Cloud instances of type “i2.4xlarge” running Solr, 
Cassandra, Spark 2.0, Mesos

• Area-Averaged Time Series over the indicated spatial subset (Global, State, City)
• Variable plotted:  MODIS-Terra Aerosol Optical Depth (AOD) 550 nm dark target
• 5,789 daily data granules covering the globe at 1 deg resolution with date range: 3/1/2000 – 2/29/2016 

(3 GB input data volume).
• Giovanni implementation uses highly optimized compiled code based on NetCDF Operator (NCO) 

toolkit, but is single threaded.  NEXUS is implemented in Python and parallelized with Apache Spark.
• Giovanni execution time is compared with NEXUS for 16-way parallelism.
• NEXUS has superior performance for subsetting operations, as indicated by the ~300x speedup for 

the Colorado subset. 
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Summary

• Spark is a good choice for many algorithms, but consider inter-process communication.

• Benchmark NEXUS speedup factors over Giovanni
§ ~300x speedup for 16-year area-averaged time series of Moderate Resolution Imaging Spectroradiometer

(MODIS-Terra) Aerosol Optical Depth (AOD) at 1 degree resolution for Colorado with NEXUS running on 6 
“i2.4xlarge” Amazon Web Services Cloud instances with Spark configured for 16-way parallelism. 

§ ▪ ~100x speedup for area-averaged time series of daily precipitation rate for the Tropical Rainfall Measuring 
Mission (TRMM with 0.25 degree spatial resolution) for the Continental United States over 18 years (1998 -
2015) with 64-way parallelism on an 8-node cluster computer at JPL. 

§ ▪ ~4x speedup for 18-year (1998 - 2015) TRMM daily precipitation global time averaged map (64-way parallel). 
§ ▪ ~22x speedup for 14-year (2001 - 2014) global map of correlation between TRMM daily and real time 

precipitation rate (64-way parallel). 
§ For small datasets, compiled, optimized, single- threaded executables like the NetCDF Operators (NCO) toolkit 

used in Giovanni work well.
§ For large data analytics, NEXUS significantly outperforms due to its ability to horizontally scale in a cloud 

computing environment.

• Data tiling recommendations
§ Tiling data into chunks yields significant performance benefits over monolithic global granule files, particularly 

for regional subsets. 
§ For calculations on small subsets, use a small tile size.
§ For global or near-global calculations use larger tiles to optimize data read performance. 

• Choose your scheduler carefully
§ In our benchmarks, Mesos consistently yielded 2-4 times faster run times compared to YARN.
§ YARN included with Spark distribution; Mesos is a separate package. 

• JPL and NASA support open source development
§ NEXUS is an open-source big data analytics framework, available at: https://github.com/dataplumber/nexus 
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