
HDF5 in the Cloud
(and NetCDF4…)

HDFCloud

John Readey
The HDF Group
jreadey@hdfgroup.org

My Background

Sr. Architect at The HDF Group
Started in 2014
Have been exploring remote interfaces to HDF
Previously: Dev Manager at Amazon/AWS

More previously: Used HDF5 while a developer
at Intel

2

What is HDF5?

Depends on your point of view:
• a C-API
• a File Format
• a data model

3

The File format is just a container for
The data. Dropping this view of HDF
allows us to more flexibly create a cloud
version of HDF.

Why HDF in the Cloud

• It can provide a cost-effective infrastructure
• Pay for what you use vs pay for what you may need
• Lower overhead: no hardware setup/network configuration, etc.

• Potentially can benefit from cloud-based technologies:
• Elastic compute – scale compute resources dynamically
• Object based storage – low cost/built in redundancy

• Community platform
• Enables interested users to bring their applications to the data
• Share data among many users

Cost Factors

• Most public clouds bill per usage
• For HDF in the cloud, there are three big cost drivers:

• Storage – What storage system will be used? (see next slide)
• Compute – Elastic compute on demand better than fixed cost

• Scale compute to usage not size of data

• Egress charges
• Ingress is free but getting data out will cost you ($0.09/GB)

• Enabling users to get just the data they need will tend to lower egress charges

5

Introducing Highly Scalable Data Service
(HSDS)

• RESTful interface to HDF5 using object storage
• Storage using AWS S3 (portable to most other object storage systems)

• Built in redundancy
• Cost effective
• Scalable throughput

• Runs as a cluster of Docker containers
• Elastically scale compute with usage

• Feature compatible with HDF5 library
• Implemented in Python using asyncio

• Task oriented parallelism

6

HSDS Features

• Clients can interact with service using REST API
• SDKs provide language specific interface (e.g. h5pyd for Python)
• Can read/write just the data they need (as opposed to transferring entire

files)
• No limit to the amount of data that can be stored by the service
• Multiple clients can read/write to same data source
• Scalable performance:

• Can cache recently accessed data in RAM
• Can parallelize requests across multiple nodes
• More nodes -> better performance

7

Object Storage Challenges for HDF

• Not POSIX!
• High latency (>0.1s) per request
• Not write/read consistent
• High throughput needs some tricks

• (use many async requests)
• Request charges can add up (public cloud)

For HDF5, using the HDF5 library
directly on an object storage
system is a non-starter. Will
need an alternative solution…

HSDS S3 Schema
Big Idea: Map individual HDF5
objects (datasets, groups,
chunks) as Object Storage
Objects• Limit maximum storage object size

• Support parallelism for read/write
• Only data that is modified needs to be updated
• (Potentially) Multiple clients can be

reading/updating the same “file”

Legend:
• Dataset is partitioned into

chunks
• Each chunk stored as an S3

object
• Dataset meta data (type,

shape, attributes, etc.) stored in
a separate object (as JSON
text)

How to store HDF5 content in S3?

9

Each chunk (heavy outlines) get
persisted as a separate object

This image cannot currently be displayed.

Client/Server Architecture 10

Architecture for HSDS

Legend:
• Client: Any user of the service
• Load balancer – distributes requests to Service nodes
• Service Nodes – processes requests from clients (with help from Data

Nodes)
• Data Nodes – responsible for partition of Object Store
• Object Store: Base storage service (e.g. AWS S3)

11

H5pyd – Python client for HDF Server

• H5py is a popular Python package that provide a Pythonic interface to the
HDF5 library

• H5pyd (for h5py distributed) provides a h5py compatible h5py for accessing
the server

• Pure Python – uses requests package to make http calls to server
• Compatible with h5serv (the reference implementation of the HDF REST API)
• Include several extensions to h5py:

• List content in folders
• Get/Set ACLs (access control list)
• Pytables-like query interface

12

HDF REST VOL

• The HDF5 VOL architecture is a plugin layer for HDF5
• Public API stays the same, but different backends can be

implemented
• REST VOL substitutes REST API requests for file i/o actions
• C/Fortran applications should be able to run as is
• Still in development – Beta expected this year

1
3

HSDS CLI (Command Line Interface)

• Accessing HDF via a service means one can’t utilize usual shell
commands: ls, rm, chmod, etc.

• Command line tools are a set of simple apps to use instead:
• hsinfo: display server version, connect info
• hsls: list content of folder or file
• hstouch: create folder or file
• hsdel: delete a file
• hsload: upload an HDF5 file
• hsget: download content from server to an HDF5 file
• hsacl: create/list/update ACLs (Access Control Lists)

• Implemented in Python & uses h5pyd

14

Future Work 1
5

• Work planned for the next year
• Compression
• Variable length datatypes
• NetCDF support
• Auto Scaling
• Scalability and performance testing

• Special thanks to NASA who is supporting this work under
ACCESS grant 15-0031

To Find out More:

• H5serv: https://github.com/HDFGroup/h5serv
• Documentation: http://h5serv.readthedocs.io/
• H5pyd: https://github.com/HDFGroup/h5pyd
• RESTful HDF5 White Paper:

https://www.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf
• Blog articles:
• https://hdfgroup.org/wp/2015/04/hdf5-for-the-web-hdf-server/
• https://hdfgroup.org/wp/2015/12/serve-protect-web-security-hdf5/
• https://www.hdfgroup.org/2017/04/the-gfed-analysis-tool-an-hdf-

server-implementation/

16

17HDF5 Community Support

• Documentation - https://support.hdfgroup.org/documentation/
• Tutorials, FAQs, examples

• HDF-Forum – mailing list and archive
• Great for specific questions

• Helpdesk Email – help@hdfgroup.org
• Issues with software and documentation

https://support.hdfgroup.org/services/community_support.html

1
7

Demo Time!

NREL (National Renewable Energy Laboratory) is using HSDS
to make 7TB of wind simulation data accessible to the public.

Datasets are three-dimensional covering the continental US:
• Time (one slice/hour)
• Lon (~2k resolution)
• Lat (~2k resolution)

Initial data covers one year (8760 slices), but will be soon be
extended to 5 years (35 TBs).

Rather than downloading TB’s of files, interested users can
now use the HSDS client libraries to explore the datasets.

Questions? Comments?

Dave Pearah
CEO
David.Pearah@hdfgroup.org

Dax Rodriguez
Director of Commercial Services and
Solutions
Dax.Rodriguez@hdfgroup.org

www.hdfgroup.org

